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6 [1] Hydrological processes within the terrestrial water cycle operate over a wide range of
7 time and space scales, and with governing equations that may be a mixture of ordinary
8 differential equations (ODEs) and partial differential equations (PDEs). In this paper we
9 propose a unified strategy for the formulation and solution of fully coupled process
10 equations at the watershed and river basin scale. The strategy shows how a system of
11 mixed equations can be locally reduced to ordinary differential equations using the
12 semidiscrete finite volume method (FVM). Domain decomposition partitions the
13 watershed surface onto an unstructured grid, and vertical projection of each element forms
14 a finite volume on which all physical process equations are formed. The projected
15 volume or prism is partitioned into surface and subsurface layers, leading to a fully
16 coupled, local ODE system, referred to as the model ‘‘kernel.’’ The global ODE system is
17 assembled by combining the local ODE system over the domain, and is then solved by a
18 state-of-the-art ODE solver. The unstructured grid, based on Delaunay triangulation, is
19 generated with constraints related to the river network, watershed boundary, elevation
20 contours, vegetation, geology, etc. The underlying geometry and parameter fields are then
21 projected onto the irregular network. The kernel-based formulation simplifies the process
22 of adding or eliminating states, constitutive laws, or closure relations. The strategy is
23 demonstrated for the Shale Hills experimental watershed in central Pennsylvania, and
24 several phenomena are observed: (1) The enslaving principle is shown to be a useful
25 approximation for soil moisture–water table dynamics for shallow soils in upland
26 watersheds; (2) the coupling shows how antecedent moisture (i.e., initial conditions) can
27 amplify peak flows; (3) the coupled equations predict the onset or threshold for upland
28 ephemeral channel flow; and (4) the model shows how microtopographic information
29 controls surface saturation and connectivity of overland flow paths for the Shale Hills site.
30 The open-source code developed in this research is referred to as the Penn State Integrated
31 Hydrologic Model (PIHM).

33 Citation: Qu, Y., and C. J. Duffy (2007), A semidiscrete finite volume formulation for multiprocess watershed simulation, Water

34 Resour. Res., 43, XXXXXX, doi:10.1029/2006WR005752.

36 1. Introduction

37 [2] In this paper we address the problem of process
38 integration for hydrologic prediction in watersheds and river
39 basins. Simulation is now widely utilized as a complemen-
40 tary research methodology to theory and experiment [Post
41 and Votta, 2005]. However, the grid resolution, scale of the
42 model, and range of hydrologic processes operating in
43 watersheds and river basins offer the dilemma of what is
44 necessary to predict hydrologic response or to simulate
45 certain behaviors of the coupled system. In this paper we
46 formulate a multiscale strategy that incorporates constitutive
47 relationships representing volume-average state variables.
48 For small watersheds and fine numerical grids, local contin-
49 uum relationships (e.g., Darcy’s law) lead to a fully coupled,

50physics-based, distributed model. At larger scales and coarse
51grids, empirical relationships with large-scale volume aver-
52ages are applied, and the model becomes a semidistributed
53model. A brief review of hydrologic modeling strategies
54demonstrates the issues involved with integration and cou-
55pling of multiple processes and clarifies the purpose of this
56paper.
57[3] Current hydrologic models may be described from
58two perspectives: physically based, spatially distributed
59models, and lumped conceptual models. Freeze and Harlan
60[1969] developed the first blueprint for numerical solutions
61to physically based, distributed watershed models starting
62from a continuum perspective (i.e., Richards’ equations for
63subsurface flow, Saint Venant equations for surface flow and
64channel routing). It was some years before the SHE model
65[Abbott et al., 1986a, 1986b] and its variants produced a
66second generation where the coupled physical equations are
67actually solved on a regular grid, with coupling handled
68through a sophisticated control algorithm that passes infor-
69mation between processes (e.g., surface water–groundwater
70exchange).

1Department of Civil and Environmental Engineering, Pennsylvania
State University, University Park, Pennsylvania, USA.

Copyright 2007 by the American Geophysical Union.
0043-1397/07/2006WR005752$09.00

XXXXXX

WATER RESOURCES RESEARCH, VOL. 43, XXXXXX, doi:10.1029/2006WR005752, 2007
Click
Here

for

Full
Article

1 of 18

http://dx.doi.org/10.1029/2006WR005752


71 [4] The approach of coupling multiple processes through
72 time-lagging and iterative coupling through boundary
73 conditions is generally considered a weak form of coupling,
74 in that it may lead to significant instability and errors
75 [LaBolle et al., 2003]. The approach also requires consider-
76 able reprogramming if changes are made to the physical
77 equations for a specific application. More recently, Panday
78 and Huyakorn [2004] have developed an approach where all
79 equations in the model are of the diffusive type, which are
80 solved in a single system on a regular grid (e.g., Richard’s
81 equation and diffusive wave equation), while equations for
82 other processes (vegetation, energy, snow) are dealt with
83 separately (iteratively). Yeh et al. [1998] have used a similar
84 approach but with finite elements. As will be described later,
85 our approach couples all dynamical equations within the
86 same prismatic volume (a prism is defined by a triangle
87 projected from the canopy, through the land surface to the
88 lower boundary of groundwater flow); and all equations are
89 solved simultaneously, eliminating the need for a controller,
90 delayed, or off-line process equations.
91 [5] Lumped or spatially integrated models are widely
92 used today, where the goal of the prediction is outflow
93 from forcing (e.g., rainfall-runoff, recharge-baseflow,
94 precipitation-infiltration). Lumped systems are low-
95 dimensional and conveniently solved, but still require an
96 empirical relationship for flux discharge that is generally
97 assumed to be linear or weakly nonlinear and fitted or
98 calibrated to the data. The reduced parameter set of this
99 approach can resolve the overall mass balance but cannot by
100 definition inform the internal space-time variation of phys-
101 ical processes. The Stanford watershed model is an early
102 example of the lumped model that includes watershed
103 processes [Crawford and Linsley, 1966]. There have been
104 efforts to try to bridge these two approaches. Duffy [1996]
105 describes a two-state model by integrating Richards’ equa-
106 tion over a hillslope into saturated and unsaturated states,
107 and later extended this approach to the problem of moun-
108 tain-front recharge using hypsometry to partition the upland,
109 transition, and flood plain zones into a intermediate-
110 dimensional system [Duffy, 2004]. Reggiani et al. [1998,
111 1999] proposed a comprehensive semidistributed frame-
112 work in which integrated conservation equations of mass,
113 momentum, and energy are solved over a representative
114 elementary watershed (REW). They discuss the issues
115 involved in parameterizing the integral flux-storage relation
116 at the REW scale, and refer to this as hydrologic closure.
117 [6] The decision of using a lumped, distributed, or semi-
118 distributed approach to model watershed systems ultimately
119 depends on the purpose of the model, and each has its
120 advantages and disadvantages. For the distributed case, the
121 governing equations are derived from local constitutive
122 relationships. For instance, the Darcy equation is applicable
123 at the plot or perhaps hillslope scale, but it is not clear what
124 should be the effective relation of flux-to-state variable
125 when integrated over larger scales where semidistributed
126 or lumped models are used (e.g., the hydrologic closure
127 problem discussed by Beven [2006]). At present there is
128 considerable discussion in the literature about the relation of
129 data needs and predictive models, including the issues of
130 model type (lumped, semidistributed, distributed), unique-
131 ness, and the appropriate scales of integration [Sivapalan et
132 al., 2002].

133[7] In the present paper a new strategy for integrated
134hydrologic modeling is proposed that naturally handles
135physical processes of mixed partial differential equations
136(PDEs) and ordinary differential equations (ODEs) as a
137fully coupled system. The model formulates the local
138physical equations via the finite volume method, using
139geographic information systems (GIS) tools to decompose
140the model domain on an unstructured grid, as well s
141distributing a priori parameter estimates to each grid cell.
142In the limit of small-scale numerical grids, the finite volume
143method implements classical (e.g., contiuum) constitutive
144relationships. For larger grid scales the method reflects the
145assumptions of the semidistributed approach described
146above, but with full coupling of all elements. The process
147of altering the physical model to accommodate effective
148parameterizations or new equations is a relatively simple
149process, since all equations reside in the same location in
150the code (i.e., the kernel). In this approach, the interactions
151are assembled on the right-hand side of the global ODE
152system, which is then solved with a state-of-the-art solver
153designed for stiff, nonlinear systems. The approach utilizes
154a triangular irregular grid that covers the domain with the
155fewest number of triangles [Palacios-Velez and Duevas-
156Renaud, 1986; Polis and McKeown, 1993] subject to
157constraints as defined by the particular problem.

1582. Modeling Approach

1592.1. Semidiscrete FVM Approach

160[8] In this section we develop the finite volume approx-
161imation for an arbitrary physical process operating on an
162unstructured grid cell. A general form of the mass conser-
163vation equation for an arbitrary scalar state variable c can
164be written

@c
@t

þr � cVþ @c
@z

¼ Wc; ð1Þ

166where c represents mass fraction of storage (dimension-
167less). For convenience, the velocity vector in (1) is divided
168into horizontal (V = {u, v}) and vertical components {w},
169and Wc is a local source/sink term for the process
170represented by c. Volume integration of (1) proceeds in
171two steps: First, we integrate over the depth of the layer and
172then over the area. For a single layer of thickness za � z � zb
173containing the scalar c, the integral over the depth takes the
174form

@

@t

Zzb
za

cdz� czb

@zb
@t

þ cza

@za
@t

þr
Zzb
za

cVdz� Vcð Þzbrzb

þ Vcð Þzarza þ wcð Þza� wcð Þzb ¼
Zzb
za

Wcdz ð2Þ

176We can evaluate the boundary terms, by rewriting
177equation (2) for a small layer about the boundary itself,
178zb

� � zb � zb
+, where zb

� = zb � e and zb
+ = zb + e. Letting the

179layer thickness approach zero, zb
+ � zb

� ! 0, the integral
180terms are eliminated and the remaining terms must balance
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181 as we approach the interface from both sides, leading to a
182 definition of the net interface flux:

cbþ
@zbþ

@t
þ Vcð Þbþrzbþ � wcð Þbþ¼ cb�

@zb�

@t

þ Vcð Þb�rzb� � wcð Þb�¼ Qb; ð3Þ

184 where Qb is the net flux across z = zb. A similar expression
185 is found for Qa at z = za. Equation (2) is now written in
186 terms of vertically integrated storage in the layer:

@c
@t

þr Vcð Þ ¼ Qb � Qa þ w; ð4Þ

188 where c is the volumetric storage per unit area (L) in the
189 layer defined by

c ¼
Zzb
za

cdz; ð5Þ

191 and w is the vertically integrated source/sink term

w ¼
Zzb
za

Wcdz: ð6Þ

193 To complete the volume integration, equation (4) is now
194 written

@

@t

Z
A

cdAþ
Z
G

N Vcð ÞdG ¼
Z
A

Qb � Qa þ wð ÞdA; ð7Þ

196 where the divergence theorem was applied to the second
197 term, G is the perimeter of A, and N is the unit normal vector
198 on G. Writing (7) in semidiscrete finite volume form
199 [Leveque, 2002] yields

dc
dt

¼
X2
k¼1

Qk �
Xm
i¼1

Qi; ð8Þ

201 where c is now interpreted as the volumetric storage (L3) of
202 c in the control volume (incompressible fluid), Qi is net
203 volumetric flux through the sides i = 1, 2, 3 of the control
204 volume, and Qk is the net volumetric flux across the upper
205 and lower boundaries k = 1, 2. Later it will be convenient to
206 divide (8) by the projected horizontal surface area of the
207 finite volume such that storage is an equivalent depth, and
208 volumetric flux terms are normalized to a unit horizontal
209 surface area.
210 [9] The vector form of equation (8) represents all pro-
211 cesses c = {c1, c2,. . .ck} within the control volume and
212 forms a fully coupled local ODE system. The fluxes across
213 the sides of the control volume are evaluated by appropriate
214 constitutive (or closure) relationships for specific processes
215 and applications. We note again that the finite volume
216 method guarantees mass conservation for each control
217 volume [Leveque, 2002], and that the semidiscrete repre-
218 sentation reduces all equations to a standard form.
219

2202.2. Multiscale, Multiprocess Formulation

221[10] The next step in developing the multiprocess system
222is domain decomposition. The horizontal projection of the
223watershed area is decomposed into Delauney triangles. Each
224triangle is projected vertically to span the ‘‘active flow
225volume’’ forming a prismatic volume which is further
226subdivided into layers to account for the physical process
227equations and material layers. When governing equations
228are a mix of ODEs (e.g., vegetation interception) and PDEs
229(e.g., overland flow, groundwater flow), the PDEs are first
230reduced to ODEs by applying the semidiscrete finite volume
231method (FVM) approach described above, and then all
232ODEs are associated with a layer within the prism. The
233prism is where all physical equations (and thus all time-
234scales of the problem) reside, and we refer to this local
235system as the kernel. Assembling the local ODE system
236over the watershed domain, a global system is formed
237which is then solved with an efficient ODE solver. This
238solution method is also known as the ‘‘method of lines’’
239[Madsen, 1975], here applied to a system of differential
240equations. For the multiple processes encountered in water-
241shed research, the approach has several advantages. First,
242the model kernel representing all physical processes oper-
243ating within the prismatic control volume can be easily
244modified for different applications or processes without
245altering the solver or even the domain decomposition. Since
246all physical equations are in a single subroutine, adding or
247omitting processes, material properties, or forcing makes
248modifications to the program quite simple. Second, the
249ODE is solved as a ‘‘fully coupled’’ system, with no time
250lagging or iterative linking of processes. Third, alternative
251constitutive or closure relationships are also easily imple-
252mented and tested in this strategy. The constitutive relation-
253ship might come from conceptual models, numerical
254experiments [Duffy, 1996], or theoretical derivation
255[Reggiani et al., 1999; Reggiani and Rientjes, 2005]. It is
256noted that constitutive relationships are sensitive to the scale
257of volume integration [Beven, 2006], a feature that is natural
258to the semidiscrete approach used here.
259[11] In this research we are developing an open-source
260community code for the simulation of watersheds and river
261basins, and we refer to this code as PIHM: Penn State
262Integrated Hydrologic Model. In this first generation of
263PIHM, we consider the following processes and dimen-
264sions: one-dimensional (1-D) channel routing, 2-D overland
265flow, and 2-D subsurface flow are governed by PDEs, while
266canopy interception, evapotranspiration, and snowmelt are
267described by ODEs. Each process is assigned to a layer
268within the kernel with overland flow and channel flow
269assigned to the surface layer, and the channel centered on
270any edge of the element. Prior to domain decomposition, the
271river network, hydraulic structures, or other devices, such as
272dams, gages, weirs, etc., are identified as special points used
273to constrain the decomposition. Although it imposes some
274computational burden to the grid generation, this idea
275simplifies the geometry of the decomposed region, which
276in turn facilitates assembling the global ODE system. For
277example, this step will guarantee that no channel intersects
278the control volume interior, or the channel segments are
279always centered on the boundary between two watershed
280elements. It also locates gages (stage, well level, climate
281station) at vertices of elements where desired, simplifying
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282 postprocessing. Figure 1 illustrates the decomposition and
283 kernel for the system to be studied here.

285 3. Building the Local ODE System

286 [12] The choice of equations in any situation is a practical
287 balance of the most important physical processes assumed
288 to operate on a watershed (Shale Hills, in our case), the
289 assumptions made about these processes in a particular
290 representation, and the scale of computation. We note that
291 there are no intrinsic limitations to more complex (or
292 simpler) equations/processes. Those presented here are
293 sufficient to characterize the physics of the particular
294 physical setting we have chosen to demonstrate.

2963.1. Processes Governed by PDEs

2973.1.1. Surface Overland Flow
298[13] The governing equations for surface flow are the 2-D
299St. Venant equations. Sleigh et al. [1998] have developed a
300numerical algorithm solving the full St. Venant equations
301using the finite volume method for predicting flow in rivers
302and estuaries, where the normal flux vector is calculated
303using Riemann approach [Leveque, 2002], and we follow
304their approach here. Letting c ! ho(x, y, t), the vertically
305integrated form of the continuity equation (4) is given by

@ho
@t

þ @ uhoð Þ
@x

þ @ vhoð Þ
@y

¼
X2
k¼1

qk ; ð9Þ

Figure 1. Schematic view of domain decomposition for hillslopes and stream reach. The finite control
volumes, elements, are prisms projected from the triangular irregular grid also referred to as a TIN
(triangular irregular network). The TIN is generated with channels as constraints, which will guarantee
that the channel is along the element boundary. In the upper part of the figure, the basic element is shown
to the left with multiple hydrological processes. A channel segment for a triangle bounded by a stream is
shown to the right.
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331 where ho (x, y, t) is the local water depth. Here u and v are
332 velocities in the plane x, y; qk are the surface flux terms
333 normalized by surface area. Note that there are three
334 unknowns, ho, u, and v, for each element. To reduce the
335 complexity of solving the full St. Venant equations, we
336 neglect inertia terms in the momentum equation, and
337 Manning’s formula is used to close equation (9), which
338 yields the diffusion wave approximation [Gottardi and
339 Venutelli, 1993]

@ho
@t

¼ @

@x
hoks

@H

@x

� �
þ @

@x
hoks

@H

@x

� �
þ
X
k

qk ð10Þ

341 with

ks ¼
h
2
3
o

ns

1

j@H=@sj
1
2

; ð11Þ

343 where H(x, y, t) is the water surface elevation above an
344 horizontal datum, n is Manning roughness coefficients, s =
345 s(x, y) is the vector direction of maximum slope, and qk are
346 the layer top and bottom input/output.
347 [14] Since the basic element in our implementation is a
348 vertically projected prism (Figure 1), the evaluation for ks is
349 slightly complicated. Let (xi, yi, Hi) be the local coordinates
350 of the free water surface at vertex Vi. Assume the free
351 surface plane is determined by vertex V2, V3, V4 and that the

352triangular element of D4D7D8 is identical. The plane is then
353defined by (see Figure 2)

x y H 1

x2 y2 H2 1

x3 y3 H3 1

x4 y4 H4 1

��������

��������
¼ 0: ð12Þ

355Note that

@H

@s
¼ s

k s k � rH ;

357and thus the hydraulic head gradient along the maximum
358slope direction of element D4D7D8 is given by

@H

@s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y2ð Þ H4 � H2ð Þ
x2 � x3ð Þ H4 � H2ð Þ

� �2

þ x4 � x2ð Þ H3 � H2ð Þ
x3 � x2ð Þ H4 � H2ð Þ

� �2
s

:

ð13Þ

360For elements that border a channel, special handling is
361required, and we discuss this in section 3.1.3. For the
362diffusion wave approximation, the surface flux per unit

width of flow is given by

Qs ¼ hoks
@H

@s
; s ¼ s x; yð Þ ð14Þ

365using (11) and (13). Applying the semidiscrete approach
366discussed above to equation (10) and normalizing by the
367surface area of the element yields the semidiscrete
368approximation for overland flow

dho

dt
¼ p� qþ � eþ

X3
j¼1

qsj

 !
i

; ð15Þ

369where qj
s is the normalized lateral flow rate from element i

371to its neighbor j. The terms p, q+, and e are throughfall
372precipitation, infiltration, and evaporation, respectively.
3733.1.2. Subsurface Flow
374[15] For subsurface flow we start again from (1) and let
375our scalar be the moisture content (volume water/void
376volume), c ! q, which we write (1) as

@q
@t

þrqV þ @ wqð Þ
@z

¼ þSq; ð16Þ

378where once again the divergence terms are separated into
379vertical (w) and horizontal or V = (u, v) components. Flow
380within the subsurface layer is complicated by the existence
381of a free surface boundary or water table within the layer.
382The layer is partitioned into two parts, where the soil above
383the water table (z+) is governed by gravitational and surface

Figure 2. Delaunay triangulation and Voronoi diagram.
The solid lines form Delanunay triangles, and the dashed
lines form Voronoi polygons. The circumcenter Vi is the
vertex of the perpendicular bisectors of the triangle, and is
used to represent the triangle for the volume average of the
state variable.
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384 tension forces, while gravity alone governs below the water
385 table (z�). Using (2) and (3) and integrating over the depth
386 of the layer yields

qs
@hu
@t

þr qVhuð Þ ¼ qþ � qo

qs
@hg
@t

þr qVhg

 �

¼ qo � q�:

ð17Þ

388 The divergence terms in (17) represent horizontal flow in
389 the unsaturated (plus sign) and saturated (minus sign) parts
390 of the layer, qs is the moisture content at saturation, hu is the
391 equivalent depth of moisture storage above the water table,
392 and hg is the depth of saturation below the water table
393 defined by

hu ¼
Zzb
zþo

q
qs
dz; hg ¼

Zz�o
za

qs
qs
dz; ð18Þ

394 where the layer is now defined with two complementary
396 zones above (za � z � zo

+) and below the water table (za �
397 z � zo

�). The flux terms or source terms to the soil
398 moisture zone (q+ and qo) are defined respectively as
399 infiltration/exfiltration through the soil surface, and recharge
400 to and from the water table. The flux q� admits an exchange
401 with a deeper groundwater layer. The divergence terms for
402 lateral flow are evaluated by integrating (17) over the
403 projected surface area of the control volume (Figure 1).
404 Applying the Reynolds transport theorem [Slattery, 1978]
405 and the divergence theorem yields equations for flow above
406 and below the water table, respectively:

1

A

Z Z
A

r qVhuð ÞdA ¼ 1

A

Z
B

qVhuð ÞndB ’
X3
j¼1

quj

1

A

Z Z
A

r qVhg

 �

dA ¼ 1

A

Z
B

qVhg

 �

ndB ’
X3
j¼1

q
g
j :

ð19Þ

408 See Duffy [1996] for details. Finally, the balance equations
409 are formed for a fully coupled unsaturated-saturated flow
410 within the layer,

qs
dhu

dt
¼ qþ � qo þ

X3
j¼1

quj

qs
dhg

dt
¼ qo � q� þ

X3
j¼1

q
g
j ;

ð20Þ

412 where the unsaturated and saturated depth of storage (hu, hg)
413 are now interpreted as volume averages per unit projected
414 horizontal surface area. The divergence terms in (20) define
415 the net lateral soil moisture flux and net lateral groundwater
416 exchange with adjacent elements. From this point we will
417 assume that the flow is vertical in the unsaturated zone, but
418 that lateral saturated groundwater flow is

X3
j¼1

q
g
j 6¼ 0:

420 We note that this term also represents stream-aquifer
421 interaction for elements adjacent to a channel. The net flux

422to/from the water table q0(hu, hg) represents the integral
423properties of unsaturated flow and recharge to/from the
424water table, as well as the effect of water table fluctuations.
425Again, in the governing ODEs all fluxes are normalized by
426projected horizontal surface area of the element with units
427[L/T].
428[16] For applications where the Darcy relationship is
429appropriate, lateral groundwater fluxes are evaluated using
430its volume-average form [Duffy, 2004] given by

q
g
ij ¼ BijKeff

Hg


 �
i
� Hg


 �
j

Dij

hg

 �

i
þ hg

 �

j

2
; ð21Þ

432where Bij is length of common boundary and Dij is distance
433between the circumcenters of elements i and j. (Hg = hg + z)i
434is hydraulic head where zi is elevation of datum of element
435i. The effective hydraulic conductivity Keff is the harmonic
436mean of the hydraulic conductivity in element i and j. The
437storage-discharge relation in equation (21) is nonlinear
438due to vertical integration. Brandes [1998] also shows, by
439way of numerical experiments, that the integral storage-
440discharge or ‘‘effective’’ constitutive relationship is a
441nonlinear function of hydraulic head at the hillslope scale.
442Flexible constitutive relationships from conceptual models,
443numerical experiments, and theoretical derivations can be
444introduced where deemed appropriate.
445[17] The approach used here assumes that each subsur-
446face layer in the model can have both saturated and
447unsaturated storage components. The interaction or cou-
448pling term between the unsaturated and saturated storage is
449defined by q0, the recharge or water table flux in equation
450(20). Duffy [2004] developed a simplified analytic expres-
451sion for the flux of recharge to/from a water table based on
452integration over the unsaturated portion of the layer using a
453simple exponential-type soil characteristic [Gardner, 1958],
454which has the form

q0 hu; hg

 �

¼ Ks

1� e�a zs�hgð Þ � ahu

a zs � hg

 �

� 1� e�a zs�hgð Þ
� 
 ; ð22Þ

456where Ks is saturated hydraulic conductivity. The a is a soil
457texture parameter for the exponential soil model; zs is total
458layer thickness. The integrated internal flux at the water
459table qo is a nonlinear function of the water table position
460and the depth of soil moisture storage above the water table.
461Equation (22) is shown for a clay loam soil in Figure 3 after
462Duffy [2004]. It is noted that although van Genuchten
463[1980] or Brooks and Corey [1964] formulations are more
464generally used in discretized form, the recharge function
465(22) has the advantage of simplicity and computation speed.
466[18] The general point is that the kernel is easily edited
467for the desired constitutive or closure relation, with proper
468care taken for new parameters required by the formulation.
469A special situation occurs under shallow water table con-
470ditions, where unsaturated storage is approximated by a
471simple function of the saturated storage and the system (20)
472can be reduced. This idea is developed for a particular case
473in section 6.
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474 3.1.3. Channel Routing
475 [19] For channel routing, applying the semidiscrete ap-
476 proach to the 1-D Saint Venant equations with the same
477 assumptions as overland flow yields

dhc

dt
¼ p� eþ

X2
l¼1

qsl þ q
g
l


 �
þ qcin � qcout

 !
i

; ð23Þ

479 where hc is depth of water in the channel, p and e are
480 precipitation and evaporation for the channel segment, and
481 ql

g
and ql

s are the lateral interaction terms for the aquifer and
482 surface flow from each side of the channel. The upstream
483 and downstream channel segments are qin

c and qout
c ,

484 respectively. The volumetric fluxes are normalized by the
485 horizontally projected surface area of the channel segment,
486 where the channel is a 1-D prismatic volume with a
487 trapezoidal or other cross section. As in the case of overland
488 flow, the diffusion wave approximation is applied to the
489 upstream and downstream channel flux terms.
490 [20] The interaction of surface overland flow and channel
491 routing, ql

s in equation (15) and (23), is controlled by a weir-
492 type equation following Panday and Huyakorn [2004]. For
493 the case of channel flooding (i.e., the channel depth exceeds
494 critical depth), the condition becomes a submerged weir
495 where the discharge is a function of flow depth in surface
496 overland flow and the channel segment. The interaction
497 between the saturated groundwater flow and channel rout-
498 ing ql

g
in equation (20) and (23) is governed by the discrete

499 form of the Darcy equation as in (21) where the adjacent
500 head is the depth of the channel.

501[21] The interaction between the surface flow and sub-
502surface flow is controlled by two runoff generation mech-
503anisms. When there is ponding on the surface, the
504infiltration rate in equation (15) and (20) is a function of
505the soil moisture, with the upper bound the max infiltra-
506tion capacity (e.g., a bounded linear relation). If the layer
507is fully saturated, then the runoff is generated by subsur-
508face saturation (Dunne runoff generation mechanism), and
509the precipitation is rejected within that time step.

5113.2. Processes Governed by ODEs

5123.2.1. Interception Process
513[22] In the presence of vegetation and canopy cover, a
514fraction of precipitation is intercepted and temporally stored
515until it returns to the atmosphere as evaporation, or passes
516through the canopy as throughfall or stemflow. In this case
517the conservation equations are directly written as balance
518equations in ODE form. Assuming that spatial interactions
519of canopy storages among elements are insignificant, the
520governing equation has the form

dhv

dt
¼ pv � ev � p

� �
i

; ð24Þ

522where hv is vegetation interception storage. Here pv is total
523water equivalent precipitation, ev represents evaporation
524from surface vegetation, and p is throughfall and stemflow
525or effective precipitation to surface storage in equation (15).
526The upper bound of hv is a function of vegetation type,
527canopy density, and even the precipitation intensity

Figure 3. Illustration of the theoretical recharge qo [LT�1] or flux of water to/from a water table within
a partially saturated layer based on equation (22). The figure shows the relationship of unsaturated and
saturated storage with recharge, and is based on a solution to Richard’s equation for an exponential-type
soil characteristic [Duffy, 2004]. For this example we neglect lateral flow in the unsaturated zone.
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528 [Dingman, 1994]. When the canopy reaches the upper
529 threshold, all precipitation becomes throughfall.
530 3.2.2. Snowmelt Process
531 [23] The accumulation and melting process of snow is a
532 cold-season counterpart to interception. Although a more
533 comprehensive physics of snow could be applied, here we
534 use a simple index approach to snow accumulation and melt
535 [Dingman, 1994]. Assuming that vegetation is dormant
536 during the snow season, and while air temperature is below
537 snow-melting temperature Tm, the snowpack will accumu-
538 late during precipitation, and if air temperature exceeds the
539 melting temperature the snowpack melts. The dynamic
540 snowmelt conservation equation is given by

dhs

dt
¼ ps � es �Dw

� �
i

; ð25Þ

542 where Dw is snow melting rate, which is also an input to
543 overland flow. It can be calculated by the air temperature
544 with

Dw ¼ M Ta � Tmð Þ; Ta > Tm
0; Ta � Tm;

�
ð26Þ

546 where M is melt factor, which can be estimated from
547 empirical formulas [Dingman, 1994], and es is evaporation
548 directly from snow.
549 3.2.3. Evaporation and Evapotranspiration
550 [24] Evaporation from vegetation interception, overland
551 flow, and snow and river surfaces is estimated using the
552 Pennman equation [Bras, 1990], which represents a com-
553 bined mass-transfer and energy method:

e ¼ D Rn � Gð Þ þ raCp es � eað Þ
Dþ g

� �
i

: ð27Þ

555 Potential evapotranspiration from soil and plant is estimated
556 using Pennman-Monteith equation

et0 ¼
D Rn � Gð Þ þ raCp

es � eað Þ
ra

Dþ g 1þ rs

ra

� �
0
BB@

1
CCA

i

: ð28Þ

558 Here et0 refers to potential evapotranspiration, Rn is net
559 radiation at the vegetation surface, G is soil heat flux
560 density, es � ea represents the air vapor pressure deficit, and
561 ra is the air density, Cp is specific heat of the air. D is slope
562 of the saturation vapor pressure-temperature relationship, g
563 is the psychometric constant, and rs, ra are the surface and
564 aerodynamic resistances. Actual evapotranspiration is a
565 function of potential eto and current plant, climatic, and
566 hydrologic conditions, such as soil moisture. In the
567 implementation, coefficients are introduced to calculate
568 actual ET from potential following Kristensen and Jensen
569 [1975]. Allen et al. [1998] provides guidelines used here for
570 computing those coefficients for different vegetation.
571 [25] Combining equations (15), (20), (23), (24), and (25)
572 leads to a local system of ODEs representing multiple
573 hydrological processes within the prism or kernel element i.
574 Spatial interactions are evaluated with appropriate consti-

575tutive or closure relationships for (14), (21), (22), (26),
576and (27).
577[26] A central feature of the integrated model PIHM is
578that all processes are fully coupled, first through the local
579kernel, and then in the global ODE system. Here we have
580outlined the interactions betweenmajor hydrologic processes,
581e.g., surface overland flow, unsaturated subsurface flow,
582saturated subsurface flow, and channel routing. More details
583can be found in the dissertation by Qu [2005].

5854. Assemble Global ODE System

586[27] The global ODE system is formed by assembling the
587local system of equations (e.g., the kernel) and assigning
588cell-to-cell connections over the watershed domain. Gener-
589ation of the unstructured grid involves domain decomposi-
590tion into prismatic volumes. The unstructured grid
591generation attempts to achieve the fewest number of cells
592to cover the region, while satisfying specific constraints
593(e.g., rivers form along the edge of a cell, cells should be as
594close to equilateral as possible for a quality grid, etc.).
595[28] We apply Delaunay triangulation [Delanunay, 1934;
596Voronoi, 1907; Du et al., 1999] to form an orthogonal
597triangular unstructured grid [see Palacios-Velez and Duevas-
598Renaud, 1986; Polis and McKeown, 1993; Vivoni et al.,
5992004]. The grid is optimal in the sense that each triangle is as
600close to equilateral as possible, for a given set of constraints.
601The constraints can include watershed boundaries, the
602stream network, geologic boundaries, elevation contours,
603or hydraulic structures. After completion of the domain
604decomposition, the triangular irregular network (TIN) need
605def is projected vertically downward to form prismatic
606volume elements, as shown in Figures 1 and 2. Using the
607circumcenter as the node defining each triangle instead of
608the centroid of the cell assures that the flux across any edge
609with its neighbor is normal to the common boundary. For
610instance, V1V2 is normal to D4D7 in Figure 2. This sim-
611plifies evaluation of the flux across each boundary. How-
612ever, it has the restriction that the circumcenter must remain
613within the triangle under all circumstances. Shewchuk
614[1997] has developed an algorithm that computes the
615Delaunay triangulation satisfying the above requirement
616from a set of points and constraints, in principle, and we
617adopt this algorithm here.
618[29] Grid generation for the watershed domain starts from
619a set of defined control points. In general, the goal is to
620represent the terrain with a minimum of triangles and
621special constraints, such as hydrographic points (e.g., gaged
622sites, dams etc.), and other specified critical terrain points
623(e.g., local topographic maximum/minimum, convexity/
624concavity, or saddle points). These special points are se-
625lected using terrain analysis tools. Once selected, they are
626honored for any subsequent grid generation. In addition to
627special points, we can also use line segments from catch-
628ment boundaries such as the stream network, elevation
629contours, vegetation polygons, etc., as constraints in the
630grid generation. This preserves certain natural boundaries in
631the domain decomposition for a particular problem. Usually
632the goal is to generate a mesh having as small a number of
633elements as possible while still satisfying all requirements
634of the Delauney triangle (minimum angle, maximum area,
635and constraints, etc.), and meeting the goals of the hydro-
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636 logic simulation (minimum support for the river network,
637 minimum channel length increment, etc.).
638 [30] Figure 4 illustrates the sequence of procedures used
639 to generate the grid and estimate parameters for each
640 element in a river basin. The decomposition process
641 involves delineation of the catchments boundary and river
642 network at the desired resolution (support), given the
643 constraint framework. The constraints, often delineated
644 from digital elevation data or other related coverages
645 [Tarboton et al., 1991; Palacios-Velez et al., 1998;
646 Maidment, 2002], clearly play a very important role in
647 domain decomposition.
648 [31] Careful matching of the special point and line con-
649 straints including the channel network, with the choice of
650 minimum area support (resolution), will assure that the
651 domain boundaries are consistent before domain decompo-
652 sition. Once the grid is generated, a priori parameter fields

653from the GIS (soil and geologic hydraulic properties,
654vegetation parameters, etc.) are projected onto the grid.

6555. Solving the Global ODE System

656[32] Combining the local ODE system across the solution
657domain yields a global ODE system in form

My 0 ¼ f t; y; xð Þ; ð29Þ

659where M is the identity matrix, y is an n by 1 vector of state
660variables, and x is the forcing. The unknown states are fully
661coupled on the right-hand side of equation (29).
662[33] An explicit solver is always preferred if an accept-
663able solution can be achieved, since within each time step,
664an explicit solver requires fewer evaluations of the right-
665hand side. However, the multiple timescales arising from

Figure 4. Schematic view of the steps in domain decomposition. During the disaggregating process,
catchments boundary, river network, and critical terrain points, etc., are introduced as constraints for
generation of the TIN. GIS tools along with soil survey and/or gelogic maps are utilized to assign a priori
hydraulic properties for each model element.
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666 watershed processes typically make (29) a highly stiff
667 system [Ascher and Petzold, 1998]. For stiff problems, the
668 overall computational cost of an explicit solution may
669 actually be higher than an implicit solver due to stability
670 concerns. The implicit sequential solver used here is the
671 SUNDIALS package (suite of nonlinear and differential/
672 algebraic equation solvers), developed at the Lawrence
673 Livermore National Laboratory. The code has been widely
674 applied, with extensive testing, and with excellent support.
675 [34] For the initial condition y(t0) = y0, a multistep
676 formula is written

XK1
i¼0

an;iyn�i þ hn
XK2

i¼0

bn;iy
0
n�i ¼ 0; ð30Þ

678 where a and b are coefficients. For stiff ODEs, CVODE
679 [Cohen and Hindmarsh, 1994] in the SUNDIAL package
680 applies the backward differentiation formula (BDF) with
681 an adaptive time step and method order varying between
682 1 and 5. Applying (30) to (29) yields a nonlinear system
683 of the form

G ynð Þ � yn � hnbn;0 f tn; ynð Þ � an ¼ 0 ð31Þ

684 with

an �
X
i>0

an;iyn�i þ hnbn;iy
0
n�i


 �
: ð32Þ

687 Numerically solving equation (31), with some variant of
688 Newton iteration, is equivalent to iteratively solving a
689 linear system of the form

M yn mþ1ð Þ � yn mð Þ

 �

¼ �G yn mð Þ

 �

; ð33Þ

691 where M is I � hbn,0 J with J = @f/@y.

692[35] The GMRES (generalized minimal residual) iterative
693linear solver in SUNDIAL makes the computational cost of
694solving the global ODE system very competitive when
695compared with other open-source solvers.

6966. The Shale Hills Field Experiment

697[36] The Shale Hills hydrologic experiment was con-
698ducted on a 19.8-acre watershed in the Valley and Ridge
699physiographic province of central Pennsylvania in 1974 by
700the Forest Hydrology group at the Pennsylvania State
701University [Lynch and Corbett, 1985; Lynch, 1976]. The
702objectives of the experiment were to determine the physical
703mechanisms of runoff and strea-flow generation at the
704upland forested watershed, and to evaluate the effects of
705antecedent soil moisture on the runoff peak and timing. The
706fully coupled numerical model PIHM described earlier is
707now applied to the Shale Hills site. The goal is to generally
708explore the questions of the original field experiment using
709an integrated model. Specifically these include the follow-
710ing: (1) What is the impact of groundwater flow and soil
711moisture on stream runoff and peakflow generation? (2)What

Figure 5. The Shale Hills watershed and measurement locations. It consists of 44 wells, 44 neutron
probes, and four weirs distributed over the 19-acre watershed.

Figure 6. Spray irrigation devices are regulated to control
the rate of irrigation under the tree canopy during the Shale
Hills experiment.
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712 is the role of complex topography in producing runoff at
713 Shale Hills? (3) Can fully coupled models improve the
714 ability to simulate catchments that have ephemeral and/or
715 intermittent channels?

717 6.1. Experimental Design and Data

718 [37] The design consisted of a comprehensive network of
719 40 piezometers, 40 neutron access tubes for soil moisture,
720 and four weirs. The distribution of sampling sites is shown
721 in Figure 5. The upper part of the channel is ephemeral or
722 intermittent, flowing during large storms or during the
723 seasonal snowmelt period. The watershed was implemented
724 with a spray irrigation network, shown in Figure 6, to
725 precisely control the amount of artificial rainfall over the
726 entire watershed. The irrigation was applied below the tree
727 canopy and above forest litter, eliminating canopy intercep-
728 tion storage during irrigation events. The watershed has a
729 mixed deciduous and coniferous canopy, with a relatively
730 thick forest litter. The soil profile at Shale Hills is typically a
731 silt loam, ranging from 0.6-m thickness at the ridge top, to
732 2.5 m deep near the channel. Three soil types are identified
733 as Ashby, a shaley-silt loam in the upland portion of the
734 watershed; the Blairton silt loam on the intermediate eleva-
735 tion slopes; and the Ernest silt loam in the lower region
736 along the channel. Underlying the soil is the Rose Hill Shale,
737 which is thought to have a relatively low permeability
738 [Lynch, 1976] and acts as an effective barrier to deeper flow.
739 The bedrock topography was estimated by the limit of hand
740 augering through the soil profile to bedrock.
741 [38] From July to September 1974, a series of six equal
742 artificial rainfall events (0.64 cm/h for 6 hours) were applied
743 to the entire watershed [Lynch, 1976]. The events were
744 timed such that the antecedent moisture gradually increased
745 from very dry in the first storm, to near saturation after the

746last event. Along with the artificial rainfall, a few natural
747rainfall events also occurred. We note that the experiment
748was conducted in late summer through the fall season when
749evapotranspiration is small, and when the snow and frost
750could be neglected. Many irrigation treatments were con-
751ducted during this experiment. The data chosen here spe-
752cifically reflect an experiment to test the effect of antecedent
753moisture on peak runoff by sequential storm events of the
754same rate and duration.

7566.2. Water Budget

757[39] Figure 7 illustrates the forcing and runoff data mea-
758sured at 15-min intervals from late July to early September.
759Note the six artificial rainfall (irrigation) events, as well as
760natural rainfall. Natural rainfall would of course be applied
761to the top of the canopy. Nonetheless, during the late season
762we assume interception storage to be small and can be
763neglected.
764[40] From the field data, the runoff/precipitation ratio is
765calculated for each rainfall event and the results are given in
766Table 1. A mass balance including change in storage shows

Figure 7. The six artificial rainfall events of equal magnitude and duration and the corresponding runoff
at the outlet weir for the Shale Hills experiment.

t1.1Table 1. Observed Cumulative Input/Output and Runoff Ratio

for the 1974 Rainfall-Runoff Experiment at Shale Hills

Event Duration
Irrigation,

m
Input,
m3

Output,
m3

Runoff/Precipitation
Ratio, % t1.2

1 1–7 Aug 0.04318 3355.236 407.4109 12.1 t1.3
2 7–14 Aug 0.045974 3572.339 998.8983 279 t1.4
3 14–19 Aug 0.038608 2999.975 1287.057 42.9 t1.5
4 19–23 Aug 0.038862 3019.712 1340.731 44.4 t1.6
5 23–27 Aug 0.04064 3157.869 1839.37 58.2 t1.7
6 27–31 Aug 0.071628 5565.744 3530.845 63.4 t1.8
Total 1–31 Aug 0.2789 21670.88 9404.31 43.4 t1.9
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767 that 4.2% of total rainfall could not be accounted for in the
768 balance. This ‘‘error’’ may be due to insufficient density of
769 measurements, missing processes, or parameters (i.e., inter-
770 ception or deep loss to bedrock).

772 6.3. Antecedent Soil Moisture Effect

773 [41] By conducting the experiment with equal rainfall
774 events (0.64 cm/h for 6 hours), it is possible to test the effect
775 of initial condition or antecedent moisture on runoff yield.
776 We note that there was no significant infiltration-excess
777 overland flow observed during the experiment. Apparently
778 the infiltration capacity is large enough to accommodate the
779 rainfall rate without producing overland flow. However, the
780 deep forest litter makes this observation problematic.
781 Figure 7 and Table 1 both indicate that as the antecedent
782 moisture increases from a very dry to a very wet pre-event
783 condition, the peak flow and total runoff increases as well,
784 with only 12% of rainfall becoming runoff for the first storm
785 (very dry), and 63% runoff ratio for very wet conditions.
786 The relaxation for the sixth event in Figure 7 and the runoff
787 ratio in Table 1 clearly suggest the significance of soil
788 moisture and groundwater storage on the changing moisture
789 threshold for rainfall-runoff generation. This is examined in
790 more detail with the integrated model implementation next.

792 6.4. Model Domain and a Priori Data

793 [42] The surface terrain at Shale Hills is represented by a
794 1-m resolution digital elevation modedl (DEM) digitized
795 from a detailed topographic survey of the watershed. There
796 were 44 monitoring wells/neutron probes covering the
797 domain as shown in Figure 5. The bedrock elevation was
798 measured at piezometer locations and then interpolated
799 to the whole domain. The domain is decomposed into
800 566 triangle elements with 315 nodes (Figure 8). The
801 channel is delineated from the DEM with 21 segments,
802 including both ephemeral and permanent reaches. Surface
803 infiltration capacity is set to be the same as saturated
804 hydraulic conductivity. Surface roughness varies with flow

depth and surface obstacles [Hauser, 2003]. In this case, an
806 effective surface roughness was estimated (trial and error) to
807 be 0.83 min m�1/3. The precipitation/irrigation forcing was
808 shown in Figure 7. Only daily temperature was available
809 near the site, so daily data were used to get a rough estimate
810 of evapotranspiration. The channel was assumed to be

811rectangular, 1.5 m wide and 0.5 m deep. The hydraulic
812roughness for the channel is set to 0.5 min m�1/3. The
813watershed boundary condition was assumed no flow for
814surface and groundwater, and at the outlet of the catchment
815the channel was assumed to be at critical depth. All initial
816conditions were estimated by interpolation of neutron probe
817and observation well data to the value just prior to the first
818irrigation.
819[43] The vertical profiles of soil moisture and saturated
820thickness with locations shown in Figure 5 were measured
821just before and after each irrigation and again at intervals
822between irrigations in the experiment. The spatial average
823depth of soil moisture storage (hu) across the entire site was
824calculated and plotted against the spatial average saturated
825groundwater storage (hg) and is shown in Figure 9. It
826reveals a strong correlation between saturated and unsatu-
827rated storage. Soil hydraulic properties were estimated from
828this information, and the procedure is described in the next
829section.

Figure 9. The saturated-unsaturated soil moisture storage
for the spatially averaged Shale Hills data (dots) during the
experiment. The solid lines represent the theoretical ‘‘steady
state’’ saturated-unsaturated storage relationship for the
shallow groundwater assumption based on the van Genuch-
ten and the exponential soil characteristic. See section 6.5
for specific parameters. Note that hs = hg � zb and the height
of saturation above bedrock is plotted in this case, where zb
is the elevation of the shale bedrock.

Figure 8. The unstructured grid used to simulate the watershed response for the Shale Hills watershed.
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8316.5. Simpified Shale Hills Model

832[44] The system of equations developed in section 3 was
833used to model the Shale Hills site. However, it was
834determined that a simplification was possible as a result
835of the shallow soil at the site. Duffy [2004] developed a
836theoretical argument, that where the groundwater table is
837near the land surface, the governing equations for subsur-
838face flow can be simplified into a single state by applying
839the ‘‘enslaving principal.’’ That is, the water table enslaves
840the soil moisture such that

dhu

dt
¼ G hg


 � dhg
dt

ð34Þ

G hg

 �

¼ dhu

dhg
; ð35Þ

844where G(hg) can be thought of as the integrated form of the
845soil characteristic function (see Duffy [2004] for details).
846This argument is essentially what was done by Bierkens
847[1998] in an earlier paper. The coupled two-state subsurface
848model (20) can now be reduced to

G hg

 � dhg

dt
¼ pþ qþ � et þ

X3
j¼1

q
g
j : ð36Þ

Figure 10. Observed and model groundwater levels for
1 August, 16 August, and 29 August. The fit is not
significantly different from a slope of 1.

Figure 11. Observed (blue) versus model (red) runoff simulation for Shale Hills experiment. Note that
the coupled model successfully simulates the internal runoff at each weir, including the upper ephemeral
part of the channel.
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850 Bierkens [1998] uses the van Genuchten soil characteristic
851 function to derive a form for G(hg) in (34) given by

G hg

 �

¼ e0 þ qs � qrð Þ 1� 1þ a zs � hð Þð Þnð Þ� nþ1ð Þ=nð Þ
� 


; ð37Þ

853 where hg and zs are height of phreatic surface and surface
854 elevation of the layer relative to some reference. The e0 is a
855 small parameter to handle the singularity in the function
856 G(hg)

�1 when hg ! zs. The qs and qr are saturated and
857 residual moisture content, and a and n are soil parameters.
858 Substituting (18) and (35) into (37), and performing the
859 integration yields an expression for hu as a function of hg:

hu ¼
1

a
1þ a zs � hg


 �
 ��n� ��1
n: ð38Þ

861A similar expression can be developed for the exponential
862soil characteristic (22) shown earlier which is given by

hu ¼
1

a
1� e�a zx�hgð Þ
� 


: ð39Þ

864Using the site averaged data for hu and hg, the parameters in
865(38) and (39) were estimated and the results shown in
866Figure 9. The mean data from Figure 9 were used together
867with the soil survey information to estimate van Genuchten
868parameters used in the simulation: qs = 0.40, qr = 0.05, a =
8692.0 L/m, n = 1.8, 0.6 � zs � 2.5 m, and Ks = 1 � 10�5 m/s.
870Also note in Figure 9 that the height of saturation above the
871shale bedrock elevation is plotted using hs = hg � zb.

8736.6. Model Results

874[45] For the domain, forcing, and a priori parameters
875described above, the simulation was carried out on a dual-
876processor desktop machine, completing the simulation in a

Figure 12. The simulated surface saturation area immediately after each of the six rainfall events. Note
that the saturation area is patchy and unconnected after the first two events, with little connectivity to the
channel. The patches of saturation occur at a local break in slope or within topographic depressions. For
later events, the connectivity increases as the water table rises and saturation overland flow occurs. It is
noted that the saturation values were interpolated to 1-m resolution using inverse distance weighting from
the triangle elements.
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877 few seconds. Because of the relatively small scale of the
878 simulation, computational efficiency is not an issue in this
879 problem. Figure 10 compares modeled and observed
880 groundwater depth for three days during the experiment,
881 1 August, 16 August, and 30 August, respectively, with an
882 overall regression slope of 1.05, and R = 0.965. Figure 11
883 illustrates simulated and observed runoff data at all four
884 weirs. The first event does not match as well as others,
885 due possibly to errors in the initial conditions, and this is
886 discussed below. The sixth event also shows some depar-
887 ture, which might be related to our assumption to neglect
888 canopy interception. It is interesting that both the obser-
889 vations and the model display a double peak in the
890 hydrograph for each single rainfall event (Figure 11). This
891 seems to be caused by a complex interaction of surface
892 runoff controlled by small-scale topography and near-
893 channel surface runoff, with subsurface flow. Additional
894 experiments are necessary to partition the precise effects,
895 but it is clear that the fully coupled distributed model can
896 capture this kind of behavior. For the Shale Hills field
897 experiment the rainfall-runoff generation mechanisms as-
898 sumed in the model include Hortonian overland flow due
899 to precipitation excess, and saturation overland flow. During
900 most of the numerical experiment, the soil infiltration capac-
901 ity is large enough to accommodate rainfall, and Hortonian
902 flow is of limited importance except in the upland regions
903 during the fifth and sixth events. Saturation overland flow
904 occurs at locations where water table saturates the land
905 surface from below. In Figure 12, the simulated regions of
906 surface saturation after each rainfall event are plotted. Note
907 that the saturation area is patchy and unconnected during the
908 first two events with little connectivity to the channel. The
909 patches of saturation occur at a local break in slope or in

910topographic depressions. Recall that the hydraulic properties
911of the soil and the forcing in the watershed are homogeneous,
912and thus local variability is largely the result of topography.
913The impact of noncontiguous temporary patches of saturation
914is that the water reinfiltrates locally since it does not have a
915path to the channel. This threshold for surface flow due to
916local topography is discussed by VanderKwaak and Loague
917[2001], and they introduce a subgrid parameterization to
918resolve it.
919[46] For later rainfall events (3–6), the connectivity of
920surface saturation increases as the water table rises and
921saturation overland flow connects the patches with the
922channel. Rejected rainfall during the later events also
923contributes to an increase in saturated area. In this analysis,
924the surface and bedrock topography exert a strong control
925on saturation overland flow, and thus have a dominant
926impact on surface runoff in Shale Hills experiment. This
927is similar to observations of Amerman [1965] and Dunne
928and Black [1970a, 1970b] at other northeastern watersheds.
929[47] Another aspect of the simulation observed in
930Figure 11 is the onset of streamflow in the upper ephemeral
931channel reach. Channel flow in the upper part of the
932watershed is only observed during years with heavy snow
933or after very large fall storms. Figure 13 shows the inte-
934grated model result for flow depth along the channel in
935response to the third rainfall event. The beginning of the
936third rainfall is identified as 0 min and most of the channel
937is dry (not shown). During the event (200 min) the length of
938flowing channel has grown considerably. After 400 min the
939event is over, and the channel continues to grow until about
94010 hours, when it reaches a maximum and begins to relax.
941After 3000 min the channel reach is largely dry again. The
942ability to examine the internal details of the flow is an

Figure 13. The flow depth along the channel for the third irrigation event. The solid lines show the
distribution of flow depth during the event and immediately after the event (600 min). The dashed lines
show the flow depth during the relaxation or recession period. The outlet weir is located on the right side
of the graph.
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943 important aspect of the fully coupled approach, including
944 thresholds of wet and dry channels.

946 6.7. Sensitivity to Initial Conditions

947 [48] Next we simulate the impact of very dry antecedent
948 soil moisture and low water table conditions to get some
949 idea of the time it takes the watershed to recover from a
950 major drought. The model is run with the same forcing
951 sequence except that the initial states (groundwater and soil
952 moisture) are reduced to the minimum possible values. The
953 response at the outlet weir is shown in Figure 14. Note that
954 it takes a relatively short time for a complete recovery of
955 peak flow as compared with the previous simulation (third
956 event or 333 hours). This simple result offers a clue that
957 there is some problem with our assumptions in the model,
958 since it has been subsequently observed during the 1990’s
959 drought, that the outlet weir completely dried up and did not
960 recover for several years. This suggests that there might be a
961 slower and deeper flow component (e.g., a multiyear
962 timescale) within the underlying less permeable shale rego-
963 lith. This might also explain the missing mass described
964 earlier, and this study is currently under way.

966 7. Conclusions

967 [49] In this paper we describe a semidiscrete finite vol-
968 ume strategy for fully coupled integrated hydrologic model
969 that is efficient for adding and subtracting processes and for
970 constructing the discrete solution domain. We demonstrate

971the strategy by coupling equations for a mixed PDE-ODE
972system that includes 2-D overland flow, 1-D channel flow,
9731-D unsaturated flow, and 2-D groundwater flow, canopy
974interception, and snowmelt. The complete system of equa-
975tions including constitutive or closure relations is coupled
976directly within a local kernel for a single prismatic element.
977GIS tools are used to decompose the domain into an
978unstructured grid, and the kernel is distributed over the grid
979and assembled to form the global ODE system. The global
980ODE system is solved with a state-of-the-art ODE solver.
981The strategy provides an efficient and flexible way to
982couple multiple distributed processes that can capture
983detailed dynamics with a minimum of elements. The FVM
984guarantees mass conservation during simulation at all cells.
985The model is referred to as the Penn State Integrated
986Hydrologic Model (PIHM).
987[50] The approach has been implemented at the Shale
988Hills field experiment in central Pennsylvania. Model
989results show that it can successfully simulate observed
990groundwater levels, as well as runoff at the outlet and at
991internal points within the watershed using a priori param-
992eters. The simulation is used to identify the important runoff
993generation mechanisms, and to illustrate the impact of
994antecedent soil moisture and groundwater level for ampli-
995fying the volume and peak runoff in the watershed. The
996effect of complex topography is shown to be a very
997important control on infiltration/reinfiltration areas within
998the watershed. The coupled model is able to simulate the

Figure 14. Simulation of the effect of a dry initial condition (drought persistence) on runoff at the
outlet. The initial condition for soil moisture and groundwater level was set to very low values and then
the experimental forcing was applied to the model. Note that the recovery is complete at approximately
333 hours.
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999 onset and relaxation of ephemeral streamflow in the upland
1000 part of the watershed. The processes and components of the
1001 model have been individually tested, and these results are
1002 given by Qu [2005]. A complete GIS interface for PIHM is
1003 currently being finalized for Web posting as a flexible and
1004 easily implemented open-source community modeling
1005 resource.
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