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[1] Our ability to predict complex environmental fluid flow and transport hinges on accurate
and efficient simulations of multiple physical phenomenon operating simultaneously over a
wide range of spatial and temporal scales, including overbank floods, coastal storm surge
events, drying and wetting bed conditions, and simultaneous bed form evolution. This
research implements a fully coupled strategy for solving shallow water hydrodynamics,
sediment transport, and morphological bed evolution in rivers and floodplains
(PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide
range of spatial and temporal scales. The model uses a standard upwind finite volume
method and Roe’s approximate Riemann solver for unstructured grids. A multidimensional
linear reconstruction and slope limiter are implemented, achieving second-order spatial
accuracy. Model efficiency and stability are treated using an explicit-implicit method for
temporal discretization with operator splitting. Laboratory-and field-scale experiments were
compiled where coupled processes across a range of scales were observed and where higher-
order spatial and temporal accuracy might be needed for accurate and efficient solutions.
These experiments demonstrate the ability of the fully coupled strategy in capturing
dynamics of field-scale flood waves and small-scale drying-wetting processes.

Citation: Li, S., and C. J. Duffy (2011), Fully coupled approach to modeling shallow water flow, sediment transport, and bed

evolution in rivers, Water Resour. Res., 47, W03508, doi:10.1029/2010WR009751.

1. Introduction
[2] Water flow and sediment transport are simultaneous

and interactive processes in rivers, floodplains, and coastal
areas. The interaction among these processes is influenced
by both human activities and extreme natural events,
resulting in aggradation and degradation in channels and
harbors, deterioration of water quality and fisheries among
other environmental effects, and many other forms of eco-
logical disturbance. Examples include dam removal, dam
break, and extreme storm events that induce rapidly vary-
ing flow and sediment flushing. The disturbance is complex
because of the uneven and changing bottom topography,
irregular boundaries, rapid and strong erosion with abrupt
bed and flow variations, and complicated and uncertain
flow-sediment transport mechanisms. Under these condi-
tions, one-dimensional, uncoupled strategies are generally
not sufficient, and two-dimensional approaches capable of
handling complicated geometry, rapidly varying flow, and
fully coupled physics are necessary. This research builds
on recent advances for numerical solutions to fully coupled
multiphysics problems in engineering and computational
fluid dynamics to flow, sediment, and bed morphology
interaction in rivers and tests the model over a range of
scales in laboratory and field experiments.

[3] The shallow water equations are typically used to rep-
resent the hydrodynamics of river floods, storm surges, tidal
fluctuations, tsunami waves, and forces acting on offshore
structures [Aizinger and Dawson, 2002]. Methods for solv-
ing the shallow water equations include the method of char-
acteristics [e.g., Katopodes and Strelkoff, 1978], finite
difference [e.g., Molls and Chaudhry, 1995], finite element
[e.g., Hervouet, 2000], and finite volume [e.g., Alcrudo and
Garcia-Navarro, 1993; Zhao et al., 1994; Anastasiou and
Chan, 1997; Sleigh et al., 1998; Toro, 2001; Bradford
and Sanders, 2002; Valiani et al., 2002; Yoon and Kang,
2004; Begnudelli and Sanders, 2006]. Although each
method has its own strengths and limitations, it is generally
true that unstructured grids have advantages for represent-
ing natural channels. An algorithm for ‘‘optimal’’ unstruc-
tured grids was proposed by Shewchuk [1997], which is
able to provide an ‘‘optimal’’ representation of the domain
with the least number of elements while still conforming to
a limited set of physical and geometric constraints particular
to the physical domain.

[4] With respect to the numerical method, the finite vol-
ume method allows for local and global mass conservation,
can be applied to structured or unstructured grids, and
requires less memory for explicit calculations as compared
to finite difference or finite element methods [Loukili and
Soulaimani, 2007]. Several investigators have solved the
shallow water equations on unstructured grids using finite
volume methods [Zhao et al., 1994; Anastasiou and Chan,
1997; Sleigh et al., 1998; Yoon and Kang, 2004], although
sediment transport was not considered in those models. The
coupled behavior of sediment transport and bed elevation
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changes was experimentally studied by Capart and Young
[1998], with implications for the dynamics of the flow re-
gime as well. For coupled sediment transport and bed evolu-
tion the assumption of nonequilibrium conditions enforces
a dynamic exchange between sediment deposition and
entrainment, and this coupling is explored in this paper.

[5] Relatively few models and fewer field observations
are available to study 2-D coupled hydrodynamic flow and
sediment transport. An example is a large flood event or
dam break on an initially dry surface where full water–
sediment–bed form coupling is likely to be important. The
dry-to-wet transition followed by a wet-to-dry transition
with an evolving bed surface during postevent relaxation
produces interesting multiscale behavior. Recently, several
1-D models were developed to simulate the dam-break-
induced sediment transport or high-concentration sediment
transport as in hyperconcentrated flow and debris flow [Bel-
los and Hrissanthou, 1998; Fraccarollo et al., 2003; Cao
et al., 2004; Ottevanger, 2005; Rosatti and Fraccarollo,
2006; Wu and Wang, 2007]. Hudson and Sweby [2003] and
Castro Diaz et al. [2008] discussed 1-D bed load transport
models coupled with shallow water equations by finite vol-
ume methods. A few studies were found in the 2-D case.
Hudson and Sweby [2005] and Simpson and Castelltort
[2006] extended the 1-D models of Hudson and Sweby
[2003] and Cao et al. [2004] to 2-D on structured grids,
although the models were not tested in laboratory experi-
ments or real flow fields in the field. Liu et al. [2008] devel-
oped a 2-D model of shallow water equations and bed load
transport. Delft3D is capable of modeling 2-D and 3-D
hydrodynamics and sediment transport using a finite differ-
ence method (http://delftsoftware.wldelft.nl/). Neither of
these models considered the effects of suspended sediment
on the hydrodynamics.

[6] In this paper we present a strategy for numerical solu-
tion of the system of fully coupled partial differential equa-
tions for 2-D shallow water flow, sediment transport, and
bed evolution. We test the code against published labora-
tory, field, and numerical experiments to demonstrate the
multiscale performance of the model. The model, referred
to as PIHM_Hydro, is based on a cell-centered upwind fi-
nite volume method using Roe’s approximate Riemann
solver on an unstructured triangular grid. A multidimen-
sional linear reconstruction technique and multidimensional
slope limiter [Jawahar and Kamath, 2000] are implemented
to achieve a second-order spatial accuracy. For model effi-
ciency and stability, an explicit-implicit method is used in
temporal discretization with operator splitting where advec-
tion and nonstiff source terms are solved via an explicit
scheme with the stiff source terms handled by a fully
implicit scheme. A number of test cases over a range of spa-
tial scales and hydrological events are used to test the model
and demonstrate the potential application. The code is open
source and available from the authors.

2. Methodology
2.1. Mathematical Formulation

[7] Our system entails two-dimensional shallow water
equations coupled with sediment mass conservation and
bed topography evolution. The 2-D shallow water equations
imply a negligible vertical velocity, hydrostatic pressure,

and an incompressible fluid appropriate for vertically well-
mixed water bodies. The system in conservative form is
written as

@ �hð Þ
@t
þ @ �uhð Þ

@x
þ @ �vhð Þ

@y
¼ � @ �zzð Þ

@t
þ �wSp ; ð1Þ

@ �uhð Þ
@t

þ
@ � u2hþ gh2

2

� �h i
@x

þ @ �uvhð Þ
@y

¼ ��gh S0x þ Sfx
� �

; ð2Þ

@ �vhð Þ
@t

þ @ �uvhð Þ
@x

þ
@ � v2hþ gh2

2

� �h i
@y

¼ ��gh S0y þ Sfy
� �

: ð3Þ

[8] Mass conservation equations are used to describe the
sediment transport and morphological evolution process.
There are two approaches to coupled sediment routing and
bed evolution, i.e., noncapacity and capacity models (or,
customarily, nonequilibrium and equilibrium). The nonca-
pacity models represent the sediment in a single mode as
the total load. Compared to capacity models, noncapacity
models treat entrainment and deposition as independent
processes, the difference between which influences the sedi-
ment discharge and morphological evolution. The nonca-
pacity models facilitate the numerical formulation since the
empirical entrainment and deposition functions can be
treated as source terms. On the basis of this discussion, the
noncapacity model is adopted here. The conservation of
sediment suspended in the water column is given by

@  hð Þ
@t
þ @  uhð Þ

@x
þ @  vhð Þ

@y
¼ E � Dþ Ss : ð4Þ

[9] A mass balance for local variation in the bed elevation
as a function of sediment removed or accumulated is given by

1� pð Þ @z
@t
¼ D� E ; ð5Þ

where t is time, x and y are horizontal coordinates, h is flow
depth, u and v are horizontal velocities, z is bed elevation,  
is flux-averaged volumetric sediment concentration (L3/L3),
g is gravitational acceleration (L/T2), p is bed sediment po-
rosity, �z is density of saturated bed, � is density of the
water-sediment mixture, S0x and S0y are the bed slopes in
the x and y directions (L/L), Sfx and Sfy are x and y friction
slopes (L/L), Sp are sources and sinks (e.g., precipitation,
infiltration, etc.), Ss are sediment sources and sinks, and D
and E are sediment deposition and entrainment fluxes across
the river bed (L/T), respectively. The densities of the water-
sediment mixture and saturated bed are given by

� ¼ �w 1�  ð Þ þ �s ; ð6Þ

�z ¼ �wpþ �s 1� pð Þ : ð7Þ

[10] We note in equation (4) that diffusive transport is
treated as negligible [Bennett, 1974].

[11] Equation (1) differs from the traditional mass con-
servation equation for shallow water flow since the right-
hand term accounts for the morphological change. We also
note that variable fluid density in (1) – (3) allows fluvial
processes to carry concentrated sediment flows.
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[12] Following the approach by Cao et al. [2004], the
system of equations (1) – (5) can be manipulated so that the
mixture density appears on the right-hand side (i.e., in the
source terms) to give

@h
@t
þ @ uhð Þ

@x
þ @ vhð Þ

@y
¼ E � D

1� p
þ Sp þ

�w � �sð ÞSs

�w
; ð8Þ

@ uhð Þ
@t
þ @ u2hþ gh2=2ð Þ

@x
þ @ uvhð Þ

@y
¼ �gh S0x þ Sfx

� �

� �s � �wð Þgh2

2�
@ 

@x
� �z � �ð Þ E � Dð Þu

� 1� pð Þ

þ  Sp

�
� Ss

�w

� �
�s � �wð Þu;

ð9Þ

@ vhð Þ
@t
þ @ uvhð Þ

@x
þ @ v2hþ gh2=2ð Þ

@y
¼ �gh S0y þ Sfy

� �

� �s � �wð Þgh2

2�
@ 

@y
� �z � �ð ÞðE � DÞv

� 1� pð Þ

þ  Sp

�
� Ss

�w

� �
�s � �wð Þv:

ð10Þ

[13] In equations (9) and (10), there are two additional
source terms. The second and third terms on the right-hand
side account for the spatial variations in sediment column
concentration and the momentum transfer, because of sedi-
ment exchange between the water and the erodible bottom
boundary.

[14] Auxiliary equations for the bottom slope are given
by S0x ¼ @z=@x and S0y ¼ @z=@y, and the friction slope is
estimated by the Manning equation:

Sfx ¼
n2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3
; ð11Þ

Sfy ¼
n2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3
; ð12Þ

where n is Manning’s coefficient.
[15] For the sediment flux, there exists an extensive liter-

ature of empirical formulae [e.g., Fagherazzi and Sun,
2003; Capart and Young, 1998; Cao et al., 2004; Wu and
Wang, 2007]. A parsimonious form which captures the em-
pirical physics for entrainment and deposition in a mini-
mum of parameters is proposed by the authors based on
those existing works:

E ¼ � �� �cð Þh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
; ð13Þ

D ¼ �! ; ð14Þ

where � is a calibrated constant, � ¼ u2
�=sgd is the Shields

parameter, �c is the critical Shields parameter for initiation
of sediment movement, � is a parameter which depends on
the distribution of the sediment in water column, ! is
the settling velocity of sediment particles in water,

u� ¼
ffiffiffiffiffi
gh
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
fx þ S2

fy

q
is the friction velocity, d is the sedi-

ment diameter, � is the kinematic viscosity of water, and
s ¼ �s=�w � 1. In this paper, following Cao et al. [2004],
� is set as

�¼ min½2; 1� pð Þ= �: ð15Þ

[16] And ! is calculated using

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

13:95
�

d

� �2
þ 1:09gs

r
d � 13:95

�

d
: ð16Þ

2.2. Domain Decomposition
[17] Quality unstructured grids are generated by the well

known Triangle algorithm of Shewchuk [2007]. Triangle
allows the user to decompose the domain subject to con-
straints, such as boundaries, observation points, and/or nested
multiresolution bathymetry [Qu and Duffy, 2007; Kumar
et al., 2008]. We have incorporated Triangle into an open
source GIS (PIHM_GIS [Bhatt et al., 2008]) to facilitate the
generation of unstructured meshes using GIS feature objects.

2.3. Numerical Model
[18] The system of equations (8), (9), (10), (4) and (5) is

hyperbolic and nonlinear and subject to discontinuities
(shocks). Extending the 1-D formulation by Fagherazzi
and Sun [2003], (5) is rewritten as

@�

@t
þ @  uhð Þ

@x
þ @  vhð Þ

@y
¼ Ss ; ð17Þ

with

� ¼ 1� pð Þzþ  h : ð18Þ

[19] The system is now conveniently expressed in vector
form:

@U
@t
þ @E
@x
þ @G
@y
¼ S ; ð19Þ

where U is a vector of the conservative variables, E and G
are the flux vectors in the x and y directions, and S is the
vector of source terms.

U ¼

h

uh

vh

 h

�

0
BBBBBBB@

1
CCCCCCCA
; E ¼

uh

u2hþ gh2

2

uvh

 uh

 uh

0
BBBBBBB@

1
CCCCCCCA
; G ¼

vh

uv

v2hþ gh2

2

 vh

 vh

0
BBBBBBB@

1
CCCCCCCA
;

S ¼

E�Dð Þ
1�p þ Sp þ �w��sð ÞSs

�w

Sx

Sy

E � Dþ Ss

Ss

0
BBBBBBBB@

1
CCCCCCCCA
:

ð20Þ

with

Sx ¼ �gh S0x þ Sfx
� �

� �s � �wð Þgh2

2�
@ 

@x
� �z � �ð Þ E � Dð Þu

� 1� pð Þ

þ  Sp

�
� Ss

�w

� �
�s � �wð Þu ;

ð21Þ
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Sy ¼ �gh S0y þ Sfy
� �

� �s � �wð Þgh2

2�
@ 

@y
� �z � �ð Þ E � Dð Þv

� 1� pð Þ

þ  Sp

�
� Ss

�w

� �
�s � �wð Þv :

ð22Þ

[20] The source term vector now has five parts: bed
slope S0, friction slope Sf, sediment concentration varia-
tions Sc, sediment exchange Se, and the additional source-
sink term Sp :

S0 ¼ 0 �ghS0x �ghS0y 0 0ð ÞT ; ð23Þ

Sf ¼ 0 �ghSfx �ghSfy 0 0ð ÞT ; ð24Þ

Sc ¼ 0 � �s��wð Þgh2

2�
@ 
@x � �s��wð Þgh2

2�
@ 
@y 0 0

� �T
; ð25Þ

Se ¼ E�D
1�p � �z��ð Þ E�Dð Þu

� 1�pð Þ � �z��ð Þ E�Dð Þv
� 1�pð Þ E � D 0

� �T
;

ð26Þ

Sp ¼
�

Sp þ
�w � �sð ÞSs

�w

 Sp

�
� Ss

�w

� �
�s � �wð Þu

�  Sp

�
� Ss

�w

� �
�s � �wð Þv Ss Ss

�T
:

ð27Þ

[21] It is now convenient to write the system as

@U
@t
þr� F ¼ S ; ð28Þ

where F ¼ (E, G)T. The system is then integrated over an
arbitrary control volume Vi (a triangular element here):

Z
Vi

@U
@t

dV þ
Z

Vi

r� FdV ¼
Z

Vi

SdV : ð29Þ

[22] Application of the Gauss theorem leads to the inte-
gral form of (29):

Z
Vi

@U
@t

dV þ
I

�i

F� nd� ¼
Z

Vi

SdV ; ð30Þ

where � is the boundary of the control volume and n ¼ (nx

ny)
T is the unit outward vector normal to the boundary.

[23] A cell-centered finite volume is used to approximate
(30) by vertically projecting a Delaunay triangle to form
the prismatic control volume (Figure 1). The state variables
of the system are stored at the centroid of the control vol-
ume and represented as piecewise constant over the do-
main. We note that by solving the system for the centroid
of each finite volume enables the implementation of a high-
order interpolation scheme [Sleigh et al., 1998], discussed
in section 2.4. Finally, (30) is rewritten as

@Ui

@t
¼ � 1

V i

X3

j¼1

Fij � nij
� �

�j þ Si ; ð31Þ

where Ui again refers to average values over the control
volume Vi, Si ¼ 1=V i

R
Vi

SdV is the numerical approxima-
tion of the source term, nij is the unit outward normal vec-
tor to the edge j, �j is then length of edge j, and Fij is the
numerical flux vector through the edge j, which is calcu-
lated using an approximate Riemann solver [LeVeque,
2002]. Details of the flux evaluation using an approximate
Riemann solver are found in Appendix A, including a dis-
cussion of the strategy for handling discontinuities and
Roe’s formulation and the numerical flux evaluation at ele-
ment boundaries [Sleigh et al., 1998].

2.4. Linear Reconstruction and Multidimensional
Slope Limiter

[24] In PIHM_Hydro we attempt to preserve high spa-
tial accuracy in the flow simulation by adopting a second-
order piecewise linear reconstruction. Many second-order
numerical schemes have been implemented for shallow
water equations on unstructured triangular grids [e.g.,
Anastasiou and Chan, 1997; Sleigh et al., 1998; Hubbard,
1999; Wang and Liu, 2000; Yoon and Kang, 2004] and
other types of grids as well [e.g., Alcrudo and Garcia-
Navarro, 1993; Ambrosi, 1995; Valiani et al., 2002; Cal-
effi et al., 2003]. Extension of structured techniques to
unstructured grids such as the MUSCL approach have
achieved only partial success because of the pronounced
grid sensitivity [Jawahar and Kamath, 2000], with poor
results typically obtained on highly distorted grids. The
reconstruction technique proposed by Jawahar and
Kamath [2000] was successfully applied with the Harten –
Lax – van Leer (HLL) approximate Riemann solver for
shallow water equations [Yoon and Kang, 2004]. Com-
pared to other multidimensional linear reconstruction
techniques, this one uses a wide computational stencil and
does not strongly depend on vertex values. It has also
been shown that high-order schemes may lead to nonphys-
ical oscillatory solutions near discontinuities [Toro, 1999].
To avoid oscillations, we limit the solution slope during
the linear reconstruction. The multidimensional slope lim-
iter proposed by Jawahar and Kamath [2000] has the
advantages that (1) the limiter is inherently multidimen-
sional which fits unstructured grids and (2) it is continu-
ously differentiable.

2.5. Source Terms
[25] It was found that the source terms in (23) – (27)

require careful treatment. The friction slope Sf and sedi-
ment exchange Se were discretized in a pointwise manner
and evaluated at the element centroid. The sediment con-
centration Sc terms are also discretized at the centroid, and
the linear reconstruction procedure readily provides the
gradient of sediment concentration ð Þ :

r i ¼
r h ð Þi �  rhi

h
: ð32Þ

2.6. Time Integration
[26] A critical problem in our coupled system is the nu-

merical instabilities related to friction slope and sediment
exchange for shallow depths. A semi-implicit method is
used, where the system (31) is split into two systems of or-
dinary differential equations:
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@Ui

@t
¼ � 1

V i

X3

j¼1

Fij � nij

� �
�j þ S0i þ Sci þ Spi ; ð33Þ

@Ui

@t
¼ Sfi þ Sei : ð34Þ

[27] In the first step, advection and source terms for bed
slope and sediment concentration are solved using an
explicit method. Then, the values obtained from the first step
define initial conditions for the remaining equations, which
use an implicit method (backward differentiation formula).
PIHM_Hydro uses the advanced ODE solver CVODE
[Hindmarsh and Serban, 2005].

[28] Explicit time integration is performed by the first-
order Euler method or a total variation diminishing Runge-
Kutta method [Shu and Osher, 1988] given by

U1 ¼ Un þ�tf Unð Þ;

U2 ¼
3
4

Un þ 1
4

U1 þ
1
4

�tf U1ð Þ;

Unþ1 ¼ 1
3

Un þ 1
3

U2 þ
2
3

�tf U2ð Þ;

ð35Þ

where f is the right-hand side of (33). The method has been
shown to improve stability and preserves high-order accu-
racy (third) [Shu and Osher, 1988].

[29] It is well known that the explicit scheme has a sta-
bility restriction on the Courant-Friedrichs-Lewy condition.
An adaptive �t is used in the model using the following:

�t � min dið Þ
2 max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

þ c
� �

i

h i ; ð36Þ

where i is the cell index and di represents the whole set of
distances between the ith centroid and those of its neigh-
boring cells.

2.7. Boundary Conditions
[30] Open and solid wall boundary conditions have been

implemented. The left-hand (slip) solid wall boundary con-
dition is given by

h�
u� � n
u� � t
 �

z�

0
BBBBB@

1
CCCCCA ¼

hL

�uL � n
uL � t
 L

zL

0
BBBBB@

1
CCCCCA ; ð37Þ

where u denotes (u, v)T and the subscripts L and asterisk
are the variables at the left side and boundary, respectively.
The velocity components can be calculated by

u�
v�

� �
¼

nx �ny

ny nx

� �
uL � n
uL � t

� �
: ð38Þ

[31] The open boundary conditions are more compli-
cated. A simple one is the free outfall condition, where the
waves pass the boundary without reflection. It can be
described as U� ¼ U L. For other cases, it is sometimes
found that the physical boundary condition(s) is not suffi-
cient, and the theory of characteristics is used to derive suf-
ficient information at the boundaries. For more detailed
discussion about the open boundary conditions, refer to
Zhao et al. [1994], Anastasiou and Chan [1997], and Sleigh
et al. [1998].

[32] A very small flow depth commonly occurs near the
wetting-drying boundaries, which introduces numerical
instabilities with unreliably high velocities that make the
friction slope and sediment source terms (equations (24)
and (26)) very stiff, as mentioned. To solve this problem, in
addition to employing the semiexplicit time integration
scheme, a simple wetting-drying algorithm was also imple-
mented. In this approach, a tolerance depth (htol) was cho-
sen in that the flow velocities were set to zero when the

Figure 1. (a) Plan view, (b) computational mesh, and (c) close-up view of the near-dam area of the
converging-diverging channel in Bellos et al.’s [1992] experiment.
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flow depth was less than htol. In each example htol was cho-
sen empirically.

3. Field and Laboratory Implementation
[33] The first objective of this research was to develop a

robust fully coupled numerical code suitable for applica-
tions over a wide range of spatial and temporal scales and
riverine processes for flow, sediment, and bed evolution. A
second objective was to bring together experimental data
sets to test and compare PIHM_HYDRO over a useful
range of spatial and temporal scales and also to compare
the model with other published models. For the laboratory
scale, we found three examples that represent small-scale
hydrodynamics and sediment transport, and two examples
were developed for the field-scale application. Each of
the four experimental results is available at http://www.
pihm.psu.edu for the purpose of future experimental and
model testing.

3.1. Two-Dimensional Laboratory-Scale Dam Break
With a Dry-Wet Transition and Converging-Diverging
Channel

[34] Bellos et al. [1992] performed simulations of instan-
taneous dam failure for a range of initial conditions. This
experiment is used to test PIHM_Hydro for simulating flow
dynamics in an irregular flow domain with an initially dry
bed with nonzero bed slope and roughness. The 21.2 m �
1.4 m wide experimental flume had a rectangular, converg-
ing-diverging cross section (Figure 4). A movable gate
(x ¼ 0 m) was used to simulate the instantaneous dam
break. Eight probes were installed along the centerline of
the channel to measure the flow depths.

[35] The initial water level is 0.15 m upstream of the
dam and zero downstream from the dam with the bed slope
of 0.002. A solid wall boundary condition was applied at
the upstream end and sidewalls, and a free out-fall condi-
tion was applied at the downstream boundary. The domain
was discretized into 3886 triangles (Figure 1). The Nash-
Sutcliffe model efficiency coefficient (NSE) [Nash and Sut-
cliffe, 1970] was used to quantitatively evaluate the accu-
racy of the model for observed and predicted quantities.
The predicted and measured flow depths at the different
positions are shown in Figure 2.

[36] Upstream of the dam the predictions match the
measurements very well with minimal error. At down-
stream locations where critical to supercritical flow and the
wetting-drying process is observed, the flow depths are still
well reproduced. However, it was found that downstream
locations (x ¼ þ5.0 m) were quite sensitive to Manning’s
roughness coefficient, possibly because of depth averaging
and lack of a vertical velocity term in the transition from
subcritical to supercritical flow [Martin and Gorelick,
2005]. Figure 2 reveals that the arrival times of the wave-
front are accurately simulated, and for this small-scale test
case the model was found to be both accurate and stable for
the wetting-drying process as well as for supercritical
flows. The model is able to simulate the early time and late
time behavior of the flood waves as well as the sharp propa-
gation of the drying front. Sediment transport was not con-
sidered in the original experiment, and other model
simulations were not found for this experiment.

3.2. Case 2: Two-Dimensional Rainfall-Runoff
Numerical Experiment With Wetting-Drying Surface

[37] A rainfall-runoff numerical experiment by diGiam-
marco et al. [1996] was used to compare simulations of
rainfall-driven flow with rapid wetting-drying of the sur-
face. In this example, a tilted V-shaped catchment (Figure
3) is generated by introducing a single, 90 min duration,
10.8 mm/h intensity rainfall event. The catchment is com-
posed of two 1000 m � 800 m planes connected by a 1000
m long � 20 m wide channel. Infiltration is zero over the
entire domain. In this case the channel depth is set to zero
which means the planes and channel are continuously con-
nected so that a backwater effect could be considered. The
bed slopes are 0.05 and 0.02, perpendicular to and parallel
to the channel, respectively. Manning roughness coeffi-
cients are 0.015 s/m1/3 for the plane and 0.15 s/m1/3 for the
channel. The simulation was run for 180 min with a free
boundary condition at the channel outlet and no-flow
boundary conditions elsewhere. Initially, the water depth is
zero over the entire domain.

[38] The simulation used 740 triangles and was compared
with integrated finite difference (IFD) [diGiammarco et al.,
1996], MIKE-SHE [Abbot et al., 1986], IHM [VanderK-
waak, 1999], and MODHMS [Panday and Huyakorn,
2004], all of which use either the kinematic or diffusive
approximations. In these models, IFD, MIKE-SHE, and
MODHMS weakly couple the 2-D flow on the plane with
the 1-D flow in the channel, while IHM fully couples the 2-
D flows on the plane and in the channel. The hydrograph
predicted by PIHM_Hydro is compared with the multimo-
del average in Figure 4a. The multimodel average is the
mean value of all model outputs. PIHM_Hydro is also com-
pared individually with IFD, MIKE-SHE, IHM, and
MODHMS in Figure 4a. The simulation data from these
models were obtained by digitizing the figures from the
publications, which introduced some error.

[39] Excellent agreement is illustrated between PIHM_
Hydro and the multimodel average (using Nash-Sutcliff cri-
teria) as with the other models, especially for the peak dis-
charge and receding limb. Although there is a slight
discrepancy in the rising limb for these models, the times to
peak discharge are almost identical. According to Figure
4a, PIHM_Hydro predicts a constant and stable plateau of
the peak discharge (4.86 m3/s), which is analytically correct
and shows the model to be stable. Among these simulations,
PIHM_Hydro had the closest agreement with IHM, fol-
lowed by MODHMS, MIKE-SHE, and IFD. respectively,
again using Nash-Sutcliff criteria. One possibility for the
similarity is that only PIHM_Hydro and IHM fully couple
the 2-D overland and channel flow to consider the back-
water effect. Figure 4b shows the accumulative mass bal-
ance errors calculated using the equation

errh ¼
precipitation � discharge � storageð Þ

precipitation
: ð39Þ

[40] The mass balance error is very small, with the maxi-
mum value less than 0.8% at t ¼ 45 min and almost zero at
t ¼ 180 min. For this benchmark case, PIHM-Hydro per-
formance is stable and mass conservative for cases of rain-
fall-driven overland channel flow and intensive wetting-
drying processes.
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Figure 2. Two-dimensional laboratory-scale dam break with dry-wet and converging-diverging channel:
measured (circles) and predicted (solid line) temporal variations of flow depth at different locations upstream
of the dam, at the dam, and downstream from the dam. Not all locations shown have observed data.
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3.3. Case 3: Two-Dimensional Laboratory-Scale Flow
and Sediment Transport Following Dam Break

[41] In this test case, model flow dynamics with fully
coupled sediment transport is implemented for two labora-
tory-scale dam break experiments with flow over movable
beds. These are described in the literature as the Taipei
experiment [Capart and Young, 1998] and the Louvain
experiment [Fraccarollo and Capart, 2002]. In the Taipei
experiment, sediment particles were artificial spherical beads
of uniform size diameter of 6.1 mm, specific gravity of
1.048, and settling velocity of 7.6 cm/s. In the Louvain
experiment, the sediment particles were replaced by cylindri-
cal PVC pellets with equivalent spherical diameter of 3.5
mm, specific gravity of 1.54, and settling velocity of 18 cm/s.
Horizontal prismatic flumes were used in both experiments.
The test reach was 1.2 m long, 70 cm high, and 20 cm wide
for the Taipei experiment and 2.5 m long, 25 cm high, and 10
cm wide for the Louvain experiment. The sluice gates were
placed in the middle of the flumes in both cases to represent
the dam break. The initial water depth was 10 cm upstream
and 0 cm downstream for both experiments. The solid wall
boundary condition was applied to all the boundaries.

[42] The 2-D computational meshes are shown in Figure
5, with 745 and 764 triangles for the Taipei and Louvain
experiments, respectively. In this model, several parameters
need to be determined. The sediment porosity (p) and
Manning’s roughness coefficient (n) were obtained from the
literature [Wu and Wang, 2007]. Here p was set to 0.28 and
0.3 for the Taipei and Louvain experiments, respectively,
while n was set as 0.025 s/m1/3 for both experiments. For
the parameters � and �c, calibration was done using meas-
ured data at 5t0 and 3t0 (t0 ¼ 0.101 s) for the Taipei and
Louvain experiments, respectively, and the calibrated pa-
rameters were then used to predict the flow and sediment
dynamics for the other two times. Parameters � and �c were
calibrated to 2.2 and 0.15 for the Taipei example and 5.0
and 0.05 for the Louvain case.

[43] In Figures 6 and 7, the predicted water (H) and bed
(z) surface elevations along the centerline of the channel are
compared with the measured values. Nash-Sutcliff criteria
were used to compare modeled and observed surface eleva-
tions for the two experiments. In the Louvain experiment,
the measured data at 5t0 were used to calibrate the model
for the same unknown parameters as before. In general, the

model reproduced the flow dynamics over movable beds
very well. Although the prediction of bed surface elevations
is not as good as the water surface, it can be considered sat-
isfactory considering the complexity of the bed evolution,
the small timescale, the small magnitude of the bed eleva-
tion change, and the measurement uncertainty. According
to Figure 6, the model predictions of the wavefront loca-
tions and the erosion magnitude were in fairly good agree-
ment with the measurement in the experiment. A hydraulic
jump formed near the initial dam sites because of rapid bed
erosion. In the Louvain experiment, the location of the hy-
draulic jump was well predicted by the model. It can be
observed from both the predictions and measurements that
the hydraulic jump propagated upstream in the Louvain
experiment.

[44] In the Taipei experiment, the measured data at 3t0
were used to calibrate the model. It is evident that the cali-
bration is not as good as that in the Louvain experiment. By
using the calibrated parameters, Figure 7 shows that the
model predicted the wavefront location and the erosion
magnitude quite well. However, the agreement between the
prediction and measurement was not as good for the magni-
tude and the locations of the hydraulic jump (Figure 10).
The hydraulic jump moved upstream in the prediction but
remained stationary in the experiment. The cause needs fur-
ther investigation.

[45] The mass balance errors of sediment transport were
calculated using

errz ¼

P
i

�zð Þi � Ai 1� pð Þ þ
P

i
� hcð Þi � At¼5t0

iP
i

�zð Þi � Ai
; ð40Þ

where �zð Þi and � hcð Þi are the change of bed elevation
and sediment load per area at each grid i. In the Louvain
experiment, the errz values are 0.05%, 0.007%, and 0.05%
at 5t0, 7t0, and 10t0, respectively. In the Taipei experiment,
the errz values are 0.02%, 0.005%, and 0.001% at 3t0, 4t0,
and 5t0, respectively. Mass balance errors are very small in
each case.

[46] Figure 8 shows the predicted sediment concentration
profiles in both experiments at different times. The model
predicts sharp forefronts of the sediment concentration pro-
file, which were caused by extremely high sediment

Figure 3. Two-dimensional rainfall-runoff dry to wet numerical experiment : tilted V-shaped catch-
ment (not to scale). The red lines represent the no-flow boundaries. The blue line denotes the channel
outlet, where the free outfall boundary is applied [diGiammarco et al., 1996]. The black lines are the
break in slope between side slope planes and the channel. The side slope is 0.05, and the bed slope is
0.02.
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concentrations in the dam break wavefronts. Similar predic-
tions were also made by several 1-D models [Fraccarollo
and Capart, 2002; Wu and Wang, 2007] in the Taipei case
at 4t0. In the Wu and Wang model, however, a small initial
downstream flow depth was specified rather than the actual
dry bed condition, which may have caused errors in mass
balance and wave arrival time. By comparing Figures 8a
and 8b, it is noted that the peak concentrations in the Taipei
case were much higher than those in the Louvain case. The
difference is because of the smaller density and lower

settling velocity of sediment particles in the Taipei case
which make erosion easier and deposition slower. It is also
noted that the peak sediment concentration decreased with
time in the Louvain case while it increased with time in the
Taipei case during their time scales. This difference is
partly related to the different time scales of the two cases,
where the Taipei experiment is run for a shorter duration
than the Louvain experiment.

[47] Figure 9 illustrates the temporal variations of flow
depths, flow discharge, and sediment discharge predicted

Figure 4. Evaluation of model performance for the 2-D rainfall-runoff dry to wet numerical experi-
ment. (a) Comparison of simulated hydrograph with MODHMS [Panday and Huyakorn, 2004], IHM
[VanderKwaak, 1999], MIKE-SHE [Abbot et al., 1986], and IFD [diGiammarco et al., 1996] and (b)
mass balance errors.
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by this model at x ¼ 0.03, 0.2, and 0.4 m. We observed that
the flow depth and flow and sediment discharges approach
equilibrium values after a period of time. In Figures 8 and
9 it is also found that volumetric sediment concentration,
flow depth, and sediment discharge were very sensitive
to particle size and density while discharge was not. Like-
wise, sediment discharge is also affected by the sediment
particle properties indirectly. Overall erosion and deposi-
tion alter the bed surface, which in turn influences the flow
depth profile.

3.4. Case 4: River and Floodplain Dynamics During
Malpasset Dam Break Event

[48] Case 4 involves an actual dam break and flood wave
propagating over a dry bed with complex topography and
boundaries. The Malpasset dam was located in a narrow
gorge of the Reyran river valley, about 12 km upstream of
Frejus in southern France. The maximum reservoir capacity
was 55,106 m3. In December 1959, the dam failed explo-
sively at night, partly because of exceptionally heavy rain.
The flood wave propagated along the Reyran valley to the
city of Frejus, and 433 casualties were reported. Details of
this catastrophe are given by Soares Fraz~ao et al. [1999].

[49] The topography of the computation domain is
shown in Figure 10 with the location of dams, transform-
ers, gauges, and police survey points [Soares Fraz~ao et al.,
1999], with the solution domain encroaching on the shal-
low tidal estuary. The bottom elevation ranges from �20 m
below sea level to 100 m above sea level. The domain
was discretized into different resolution meshes using the
domain boundary and the 13,541 topography survey points
as the constraints. The 38,208-triangle mesh and a close-
up view of the computational mesh near the dam are pre-
sented in Figure 11. The mesh is much finer immediately
downstream from the dam and along the river, where rapid
and abrupt flow occurred. The initial water level in the res-
ervoir is 100 m above sea level and the channel bottom
downstream from the dam is set dry in the model. The
solid wall condition is imposed along all boundaries. The
Strickler coefficient ranges from 30 to 40 m1/3/s1 [e.g.,
Soares Fraz~ao et al., 1999; Hervouet and Petitjean, 1999],
corresponding to Manning’s coefficient from 0.033 to 0.025

s/m1/3. A uniform Manning coefficient of 0.033 s/m1/3

was advised by other researchers [e.g., Goutal, 1999; Her-
vouet, 2000; Valiani et al., 2002]. The sensitivity of the
model to the Manning’s coefficient was first studied on
a 26,000-element triangle mesh (Table 1). It shows
that PIHM_Hydro does work best at n ¼ 0.033 s/m1/3,
which is in agreement with the previous studies as well
as the recommendation for winding natural rivers by
Henderson [1966].

[50] Table 2 shows how the grid resolution or terrain re-
solution influences the numerical solutions. Because of the
large magnitude of water surface elevations, both NSE and
root-mean-square error (RMSE) are used here to quantita-
tively assess the prediction errors. It is evident that the finer
spatial resolutions produce better solutions, up to the point
when the grid resolution reaches �38,208 in this case, and
accuracy does not improve much even if the grids get much
finer. By comparing the two metrics at the gauge stations
and the police survey points in Table 2, we can see that the
maximum water surface elevations (H) at the gauge points
are more sensitive to the grid and terrain resolutions than
those at the police survey points. This is because the mag-
nitudes of the water depths (h) in the river are larger than
the bed elevation (z), while along the banks the bed eleva-
tions are larger. The maximum water surface elevation is a
reasonable metric to assess the model accuracy. Tables 1
and 2 illustrate that when the number of grids reaches
26,000, the simulation becomes satisfactory for all mea-
surement locations according to our NSE criterion and that
increasing the resolution to 38,208 grids provides some
improvement, while finer-resolution grids do not signifi-
cantly improve results.

[51] To examine the convergence of the model with suc-
cessive grid refinement, we evaluated Roache’s grid con-
vergence index [Roache, 1994] at each gauge point. From
this analysis a 38,208-grid mesh with n ¼ 0.033 s/m1/3 was
found to provide the best result and was used to compare
PIHM_Hydro with other models of the Malpasset dam
break.

[52] The predicted evolution of flood inundation is
shown with the police-surveyed points in Figure 12. The
cells with a water depth smaller than 0.01 m are considered

Figure 5. Plan view of the computational mesh for (a) the Louvain experiment and (b) the Taipei
experiment. The thick vertical lines denote the dam in each case.
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dry. The police-surveyed points are high-water marks,
which are considered to represent the flooded boundary.
As can be seen from Figure 12, the model-predicted flood
area agrees with the police survey quite well. Table 3 com-
pares the computed arrival times of the flood waves at
three electric transformers with simulations from Hervouet
and Petitjean [1999], Valiani et al. [2002], and Yoon and
Kang [2004]. Hervouet and Petitjean’s model is based on a
finite element method (FE) using unstructured triangular
grids, while Valiani et al. and Yoon and Kang’s models
were developed by the HLL finite volume method (FV) on
unstructured triangular and quadrilateral grids, respec-
tively. The exact arrival times of the flood wavefront are
unknown, and the measurements were affected by some

uncertainties, e.g., the precise rupture time of the dam.
Therefore, in addition to the arrival time, the travel time
of the flood wave between two points is also an important
criterion for judging the performance of a model.

[53] Note, in Table 3 that the arrival times and travel
times of the flood waves predicted by PIHM_Hydro are in
excellent agreement with the measurement with the maxi-
mum error �2%. More importantly, PIHM_Hydro per-
forms better than the other schemes for predicting the
arrival time when the flood has traveled a large distance
downstream. Although there are uncertainties in the data,
from Table 3, we can see that PIHM_Hydro has only a 2%
error in the arrival time at site C, while the other models
vary from 12% to nearly 50% error in arrival time.

Figure 6. Water and bed surface levels along the centerline in the Louvain experiment ( t0 ¼ 0.101 s).
The vertical dashed line is the dam location.
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Although it was not possible to directly compare the com-
putational resources that these models require because of
the unavailability of the codes, it is still useful to note that
PIHM_Hydro used 38,208 triangles compared with Yoon

and Kang’s FV model with nearly 68,000 triangles to
achieve a slightly more accurate solution.

[54] The water level, in addition to the arrival time and
travel time, is another important criterion for judging

Figure 8. Predicted sediment concentration profiles in the (left) Louvain and (right) Taipei
experiments.

Figure 7. Water and bed surface levels along the centerline in the Taipei experiment ( t0 ¼ 0.101 s).
The vertical dashed line is the dam location.
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whether a model reproduces flow and flood wave phenom-
ena accurately. Table 4 presents comparisons between the
predicted and measured maximum water levels. The results
are presented in Table 4 for the gauge points along the river
and in Table 5 for the police survey points at the left and
right banks. As discussed above, the maximum water sur-
face elevations in Table 4 are a better metric to assess
model accuracy. According to Table 4, the PIHM_Hydro
model produced improved predictions as compared to the
finite volume models with smaller RMSEs, while achieving
similar accuracy with the commercial finite element model
by Hervouet and Petitjean [1999]. We note that PIHM_
Hydro used far fewer elements than Yoon and Kang’s finite

volume model. In Tables 4 and 5, we can see that PIHM_
Hydro performs very well in terms of stability, accuracy,
and robustness on the complicated geometry and topogra-
phy, even when including the intensive wetting-drying
processes which are not included in the other models.

3.5. Case 5. Field-Scale Numerical Experiment With
Dam Break and Sediment Dynamics

[55] Finally, case 5 explores a hypothetical 2-D dam
break in a wide river reach with a movable bed, previously
simulated in 1-D by Cao et al. [2004] and Wu and Wang
[2007]. The channel is 50 km long and 1000 m wide, and
the hypothetical dam was initially located at the midpoint

Figure 9. Predicted temporal variations of (a and b) flow depth, (c and d) flow discharge, and (e and f)
sediment discharge in the (left) Louvain and (right) Taipei experiments.
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Figure 10. Topography of the Reyran valley and coastal zone for the Malpasset dam break event.

Figure 11. Close-up view of the 38,208-grid mesh near the dam for the Malpasset dam break
simulation.

Table 1. Flood Arrival Times at Three Electric Transformers With Different Manning’s n on the 26,000-Grid Mesh During Malpasset
Dam Break Event

Transformer Measured Time (s)

n (s/m1/3)

0.033 0.032 0.031 0.03 0.029 0.028 0.027 0.026 0.025

A 100 130 132 135 139 142 143 144 145 146
B 1240 1225 1209 1191 1174 1156 1137 1119 1100 1079
C 1420 1400 1381 1361 1340 1319 1296 1275 1252 1227
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of the reach. The initial static water depths upstream and
downstream from the dam are 40 and 2 m, respectively. Ini-
tially, the channel bed is horizontal and is specified to have
a noncohesive, uniform sediment with a grain size of 4
mm. The computational domain was discretized to 3329 tri-
angles. The solid wall boundary condition was applied
along all boundaries. After Cao et al. [2004], we use a
value of 0.045 for the critical Shields parameter ð�cÞ, 0.4
for the bed porosity (p), 2.65 for the specific gravity of
sediment particle, and 0.03 s/m1/3 for Manning’s coefficient
(n). The constant � was set at 8.5 � 10�6.

[56] The 1-D results of Cao et al. [2004] and Wu and
Wang [2007] are compared to PIHM_HYDRO for the

Figure 12. Flood inundation map at different times during the Malpasset dam break event with Mann-
ing’s n ¼ 0.033 s/m1/3 on the 38,208-grid mesh.

Table 2. Nash-Sutcliffe Efficiency (NSE) and Root-Mean-Square
Error (RMSE) of Maximum Water Levels at the Gauge Points
and Police Survey Points on Different Spatial Resolutions for the
Malpasset Dam Break Event

Locations Metrics

Grid Number

5344 9100 18,533 26,000 38,208 62,549

Gauge NSE 0.78 0.8 0.81 0.97 0.97 0.97
RMSE 9.89 9.42 9.22 3.84 3.55 3.52

Police survey NSE 0.94 0.95 0.96 0.97 0.97 0.98
RMSE 5.23 5.02 4.14 3.99 3.44 3.19
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water surface and bed elevation along the centerline of the
river reach after the hypothetical dam break (Figure 13).
First, we notice that the dam break induces significant
erosion. The sediment transport process had a major impact
on the flow dynamics, affecting both the water surface pro-
file and wave speed. The results of all three models are
similar to the early time results (e.g., t < 2 min) from the
small-scale experiments discussed in case 3. A hydraulic
jump is formed near the dam site because of rapid bed ero-
sion. However, the jump attenuates progressively as it
propagates upstream and eventually disappears after about
8 min. Compared to the simulation without sediment trans-
port, the forward wavefront with sediment transport moves
more slowly at the early stage, while the backward wave
propagates at essentially the same speed. This was also
observed by Cao et al. and Wu and Wang. However, after
about 20 min, the forward wavefront using equations (13)
and (14) propagates at the same speed as without sediment
transport, while Cao et al.’s and Wu and Wang’s entrain-
ment and deposition solutions propagate much faster.

[57] During the early stage of the dam break, the PIHM_
Hydro solution is close to the results of Wu and Wang. At
the later time, a large difference develops with respect to
the bed surface. In PIHM_HYDRO the erosion and deposi-
tion that occur just after the wavefronts passed are not
observed in the other models. Cao et al.’s model shows
large deposition occurs, while Wu and Wang’s model shows
attenuated erosion near the wavefront. From Figure 13, it is
also noted that only Cao et al.’s equations predict a separate

bore upstream of the wavefront. This may be caused by the
overprediction of sediment entrainment by Cao et al.’s
equations [Wu and Wang, 2007].

4. Conclusions
[58] This study presents a 2-D high-order model for fully

coupled shallow water flow, nonequilibrium sediment
transport, and bed evolution (PIHM_Hydro). New formula-
tions were proposed for deposition and erosion. A stable
and second-order-accurate numerical algorithm was imple-
mented on unstructured grids using an upwind finite vol-
ume method combined with a multidimensional gradient
reconstruction and slope limiter technique. A GIS tool is
used for automating constrained unstructured domain
decomposition from the initial elevation data. The model is
capable of producing accurate and stable solutions over a
wide range of spatial scales and hydrological events, such
as discontinuous flow and the wetting-drying process, by
using the approximate Riemann solver and the semi-
implicit time integration technique based on CVODE
[Cohen and Hindmarsh, 1994].

Table 4. Maximum Water Level at the Gauge Points With
Manning’s n ¼ 0.033 s/m1/3 on the 38,208-Grid Mesh During
Malpasset Dam Break Eventa

Measured
Water Level

PIHM_
Hydro

Hervouet and
Petitjean [1999]

Valiani
et al. [2002]

Yoon and
Kang [2004]

6 (Grid point) 84.2 86.48 81.98 88.35 80.85
7 (Grid point) 49.1 53.00 53.86 54.44 55.8
8 (Grid point) 54 53.58 53.8 53.26 53.54
9 (Grid point) 40.2 48.87 48.39 47.93 48.68
10 (Grid point) 34.9 36.99 36.88 36.52 37
11 (Grid point) 27.4 25.01 25.54 25.38 25.7
12 (Grid point) 21.5 18.75 18.48 19.14 19.23
13 (Grid point) 16.1 16.64 17.43 17.66 17.12
14 (Grid point) 12.9 12.79 12.6 12.76 12.86
NSE 0 0.97 0.97 0.97 0.96
RMSE 0 3.55 3.54 3.66 3.97

aValues are in meters.

Table 3. Flood Arrival Times at Three Electric Transformers With Manning’s n ¼ 0.033 s/m1/3 on the 38,208-Grid Mesh During the
Malpasset Dam Break Eventa

Measured Time (s) PIHM_Hydro Hervouet and Petitjean [1999] Valiani et al. [2002] Yoon and Kang [2004]

A 100 98 (�2%) 111 (þ11%) 98 (�2.0%) 103 (þ3.0%)
B 1240 1226 (�1.1%) 1287 (þ3.8%) 1305 (þ5.2%) 1273 (þ2.7%)
C 1420 1402 (� 1.3%) 1436 (þ1.1%) 1401 (�1.3%) 1432 (þ0.8%)
B– A 1140 1128 (�1.1%) 1176 (þ3.2%) 1207 (þ5.9%) 1170 (þ2.6%)
C– B 180 176 (�2.2%) 149 (�17.2%) 96 (�46.7%) 159 (�11.7%)
Method N/A FV FE FV FV
Grid type N/A Triangle Triangle Quadrilateral Triangle
Grid number N/A 38,208 26,000 10,696 67,719

aFV and FE denote the finite volume and finite element methods, respectively. B– A is the travel time of the flood wave from transformer A to B, and
C– B is for the travel time from transform B to C.

Table 5. Maximum Water Level at the Police Survey Points With
Manning’s n ¼ 0.033 s/m1/3 on the 38,208-Grid Mesh During the
Malpasset Dam Break Eventa

Measured
Water Level PIHM_Hydro

Valiani
et al. [2002]

Yoon and
Kang [2004]

1 (Survey point) 79.15 81.01 75.96 75.13
2 (Survey point) 87.2 90.04 89.34 87.38
3 (Survey point) 54.9 52.90 53.77 55.09
4 (Survey point) 64.7 56.83 59.64 57.41
5 (Survey point) 51.1 46.75 45.56 47.11
6 (Survey point) 43.75 43.89 44.85 45.74
7 (Survey point) 44.35 42.41 42.86 40.47
8 (Survey point) 38.6 31.84 34.61 32.58
9 (Survey point) 31.9 32.71 32.44 33.16
10 (Survey point) 40.75 37.39 38.12 38.29
11 (Survey point) 24.15 23.57 25.37 25.16
12 (Survey point) 24.9 28.06 27.35 25.96
13 (Survey point) 17.25 21.82 23.58 24.41
14 (Survey point) 20.7 21.42 23.19 20.58
15 (Survey point) 18.6 19.43 19.37 19.08
16 (Survey point) 17.25 20.13 20.39 17.04
17 (Survey point) 14 15.66 14.23 16
NSE 0 0.97 0.98 0.97
RMSE 0 3.44 3.10 3.48

aValues are in meters.
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[59] PIHM_HYDRO is compared to laboratory- and field-
scale experiments, as well as other models with comparable
physics from the literature and the results. For the labora-
tory-scale Bellos experiment (case 1), the model was able to
accurately simulate the wetting-drying process and supercrit-
ical flow. In case 2, the rainfall-runoff experiment maintains
a mass-conserving solution for rapid wetting-drying surfa-

ces. In case 3, we examine a laboratory-scale experiment
which demonstrates the interaction of flow and sediment
transport following a dam break. Case 3 demonstrates that
(1) the hydraulic jump, which forms below the dam break
because of rapid bed erosion, propagates upstream and (2)
extremely high sediment concentrations within the dam
break wavefront leads to sharp forefronts of the sediment

Figure 13. Predicted water and bed surface levels along the centerline in the field-scale-wide river test
case. The blue line represents the dam site.
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concentration profile. In case 4 the model was applied to the
real dam break and flood event, the Malpasset dam accident,
with complex topography and geometry as well as discontin-
uous rapid flow and wetting-drying processes. The model
was found to have excellent agreement with measurements,
including the arrival times, travel times of the flood wave,
the maximum water surface along the river and the banks,
and the boundary of flooded area. For case 5, it was found
that after a long time relative to the wavefront duration (e.g.,
20 min in the large river case), deposition occurs as a trailing
wave of very high sediment concentration in the water col-
umn, which was not observed in the other models studied
here. It shows that fully coupled 2-D sediment transport and
bed erosion have a major impact on the flow dynamics,
affecting both the water surface profile and wave speed of
model solutions. PIHM_HYDRO is an open source code
and is freely available with all test cases described here for
community access at http://www.pihm.psu.edu.

Appendix A
[60] To evaluate the flux using an approximate Riemann

solver, the Jacobian of the normal flux (F � n) is calculated.

Jn¼

0 nx ny 0 0

c2�u2ð Þnx�uvny 2unxþvny uny 0 0

�uvnxþ c2�v2ð Þny vnx unxþ2vny 0 0

� unxþvny
� �

  nx  ny unxþvny 0

� unxþvny
� �

  nx  nx unxþvny 0

0
BBBBB@

1
CCCCCA ;

ðA1Þ

where Jn¼ @ F�nð Þ
@U ¼ @ Eð Þ

@U nxþ @ Gð Þ
@U ny: The eigenvalues are

�1¼ unxþvnyþc;�2¼unxþvny; �3¼unxþvny�c; �4

¼ unxþvny; �5¼0;
ðA2Þ

with c¼
ffiffiffiffiffi
gh
p

being the celerity of small-amplitude gravita-
tional waves. Corresponding eigenvectors are given by

e1¼

1

uþnxc

vþnyc

c

c

0
BBBBBBB@

1
CCCCCCCA
;e2¼

0

�ny

nx

0

0

0
BBBBBBB@

1
CCCCCCCA
; e3¼

1

u�nxc

v�nyc

c

c

0
BBBBBBB@

1
CCCCCCCA
; e4¼

0

0

0

1

1

0
BBBBBBB@

1
CCCCCCCA
;

e5¼

0

0

0

0

1

0
BBBBBBB@

1
CCCCCCCA
:

ðA3Þ

[61] This hyperbolic system is degenerate since one eigen-
value is zero. It has two shocks, two rarefaction waves, or a
shock plus a rarefaction wave in addition to a contact discon-
tinuity. The contact discontinuity is produced on the basis of
the assumption of negligible flow turbulence and sediment
diffusion [see Toro, 2001; Fagherazzi and Sun, 2003].

[62] Several formulations for the numerical flux at the
boundary of two elements were found to be satisfactory
[Toro, 2001], but Roe’s formulation was consistently more
stable, producing solutions at extreme conditions where
others fail [Sleigh et al., 1998].

[63] The numerical flux is given by

Fn ¼
1
2

F ULð Þ � nþ F URð Þ � n� ~Jn

		 		 UR � ULð Þ

 �

; ðA4Þ

where UL and UR are the left and right conserved varia-
bles and ~Jn is the modified Jacobian with a form similar
to Jn and must meet the following requirements [Roe,
1981].

[64] 1. ~Jndepends on the left and right states.
[65] 2. ~Jnis diagonalizable with real eigenvalues and a set

of eigenvectors.
[66] 3. F� nð ÞR � F� nð ÞL ¼ ~Jn UR � ULð Þ :
[67] 4. ~Jn ! Jn ~U

� �
asUL;UR ! ~U:

[68] ~Jn can be evaluated as ~Jn ¼ Jn ~U
� �

with ~U being
some average values based on the left and right states. A
change of variable is used to find the Jacobian matrix meet-
ing these requirements [Roe, 1981; LeVeque, 2002]. It is
noted that the bottom elevation is always continuous at the
shock and contact discontinuity locations according to the
Rankine-Hugoniot conditions [Fagherazzi and Sun, 2003].
The intermediate states are calculated as

~h ¼ hL þ hR

2
;~u ¼ uL

ffiffiffiffiffi
hL
p
þ uR

ffiffiffiffiffi
hR
pffiffiffiffiffi

hL
p
þ

ffiffiffiffiffi
hR
p ; ~v ¼ vL

ffiffiffiffiffi
hL
p
þ vR

ffiffiffiffiffi
hR
pffiffiffiffiffi

hL
p
þ

ffiffiffiffiffi
hR
p ;

~ ¼  L
ffiffiffiffiffi
hL
p
þ R

ffiffiffiffiffi
hR
pffiffiffiffiffi

hL
p
þ

ffiffiffiffiffi
hR
p :

ðA5Þ

[69] The eigenvalues of ~Jn are given by

~�1 ¼ ~unx þ ~vny þ ~c; ~�2 ¼ ~unx þ ~vny;

~�3 ¼ ~unx þ ~vny � ~c; ~�4 þ ~unx þ ~vny; ~�5 ¼ 0;
ðA6Þ

with ~c ¼
ffiffiffiffiffi
g~h

q
, and the corresponding eigenvectors are

~e1 ¼

1

~uþ nx~c

~vþ ny~c

~ 

~ 

0
BBBBBBB@

1
CCCCCCCA
; ~e2 ¼

0

�ny

nx

0

0

0
BBBBBBB@

1
CCCCCCCA
; ~e3 ¼

1

~u� nx~c

~v� ny~c

~ 

~ 

0
BBBBBBB@

1
CCCCCCCA
;

~e4 ¼

0

0

0

1

1

0
BBBBBBB@

1
CCCCCCCA
; ~e5 ¼

0

0

0

0

1

0
BBBBBBB@

1
CCCCCCCA
:

ðA7Þ

[70] The difference in the left and right conserved varia-
bles can be expressed as Jacobian eigenvectors :

dU ¼ UR �UL ¼
X5

k¼1

�k~ek ðA8Þ
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with

�4 h ð ÞR� h ð ÞL� hR � hLð Þ ~ 

�5 ’R �’Lð Þ � ðh’ÞR � ðh’ÞL
� �

[71] Therefore, ~Jn

		 		 UR �ULð Þ ¼
P5
k¼1

~�k

		 		�k~ek , and the nu-
merical flux is calculated as

Fn ¼
1
2

F ULð Þ � nþ F URð Þ � n�
X5

k¼1

~�k

		 		�k~ek

" #
: ðA10Þ

[72] To avoid entropy violation at the sonic point or criti-
cal flow condition, a fix proposed by Harten and Hyman
[1983] is incorporated:

~�k

		 		 ¼ ~�k

		 		 if ~�k

		 		 � 	;
	 if ~�k

		 		 < 	:

(
ðA11Þ

	 ¼ max 0; ~�k � �kð ÞL; �kð ÞR � ~�k

 �

: ðA12Þ
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