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Abstract 
 
Distributed integrated hydrologic models are data and computationally intensive. In order 
to perform a high temporal and spatial resolution run of a large scale hydrologic model in 
feasible time, parallelized versions of hydrologic model can be run on a cluster of parallel 
processors.  An efficient implementation of such a parallelized hydrologic model requires 
proper partitioning of the model domain. This paper discusses and highlights several 
hydrologic, architectural and algorithmic issues which need to be incorporated in an 
efficient domain partitioning for parallel implementation of integrated distributed 
hydrologic model. Here we also compare a suite of partitioning algorithms, both 
geometry and graph theory based, in terms of their efficiency in a) minimizing 
interprocessor communication b) load balancing c) adaptability  to  constraints and e) 
capturing actual communication volume. Hybrid algorithms are found to be most 
effective in minimizing communication volume. But the performance of the algorithms 
gets adversely affected while trying to satisfy multiple architectural constraints. The 
algorithms have been implemented on unstructured decomposed domain of Great Salt 
Lake basin and are discussed vis-à-vis finite volume based Parallelized – Pennstate 
Integrated Hydrologic Model (P-PIHM).  
 
 
I. Introduction 
 
Hydrologic models simulate hydrologic state variables in space and time while using 
information regarding heterogeneity in climate, land use, topography and hydrogeology 
[Feeze and Harlan, 1969]. These models have inherent advantages over conventional 
lumped models due to incorporation of natural heterogeneities [Entekhabi and Eagleson, 
1989; Pitman et al., 1990] leading to a more physically based simulation of hydrologic 
processes. Application of these models has varied from synoptic to basin to watershed to 
hill slope scales. Of late, basin scale models have received significant emphasis by 
hydrologic modeling community because the land surface units at these regional scales 
are natural spatial integrators/accumulators of water and associated material transports 
(Lahmer, 1998). Various physically-based distributed watershed models (e.g. Beven and 
Kirkby, 1979; Arnold et al., 1991; Liang et. al., 2004; Vivoni et. al., 2004; Ivanov et. al., 
2004; Qu, 2004 and Kumar et. al., 2007a) developed over the years simulate major 
hydrological processes on multiple spatial domains over varied temporal scales with 
interactions among them spanning from uncoupled to strongly coupled. However, 
procedures for fully integrating heterogeneities and processes in modeling process for a 
large scale application is a challenge in itself in terms of having to strike a balance 
between descriptive detail and computational load. One of the first and important steps in 
satisfying computational accuracy and efficiency constraint of the model simulation is to 
perform proper discretization of the model domain into numerous physical subdomains 
based on hillslopes (Band, 1989), a contour (Moore et al., 1988) or structured/ 



 

 

unstructured grids through a process called domain decomposition and henceforth 
assigning heterogeneous hydrologic parameters homogenously over the unit cells. 
Different mathematical formulation of the process equations ranging from finite 
difference (MODHMS, Panday and Huyakorn, 2004 ), finite element (FEMWATER, Lin 
et. al., 1997) to finite volume (PIHM) have been explored synergistically with smart 
domain decomposition strategies (Kumar et. al., 2007b) to do computationally efficient 
simulations of coupled nonlinear hydrologic process. But the size of computation 
increases with increasing spatio-temporal resolution, number of physical processes 
incorporated in the model and the mathematical complexity of the physical equations and 
their approximations. This poses considerable challenge to the application of any 
distributed hydrologic model at higher spatio-temporal resolution. Just to give an idea 
about the scale of computation, Johnson (2000) took 20 hours of computing time to 
simulate 20 hours of event time using a two-dimensional numerical model CASC2D 
(Julien and Saghafian, 1991), a physics based diffusive wave model to simulate the 
rainfall runoff processes, in Buffalo Creek watershed at a resolution of 72 by 93 meters.  
Beeson et. al., 2003 in a series of hydrologic simulation experiments over Whitewater 
River basin in southeastern Kansas using MODHMS model observed that with increase 
in number of physical processes and complexities there is an exponential increase in 
simulation time as shown in Fig. 1. Another important aspect in integrated hydrologic 
modeling which is also computationally intensive is estimation of hydrologic parameters 
by calibrating the model to observed watershed behavior e.g. streamflow. It is almost 
computationally impractical to optimize all hydrologic parameter values that define the 
characteristic of each unit decomposed cell. While comparing various automated 
calibration techniques over a relatively small catchment at Shale Hills in north Central 
Pennsylvania using a distributed hydrologic model for a very coarse discretization 
resolution, Tang et. al., 2006 observed that even the most efficient calibration algorithm 
may take several days or longer for calibrating an integrated hydrologic model even on 
state of the art workstation with a 3 GHz processor and 2 Gb of RAM.  

This implies that meeting the challenges of integrated hydrologic modeling 
requires a significant increase in computing power (O’Neill and Steenman-Clark, 2002) 
which is achieved not only by the faster hardware, but also more importantly by 
improving the efficiency of faster codes. With the advent of parallel processing 
architectures, high computing performance can be achieved by parallelization of existing 
serial integrated-hydrologic-model code. This translates to running different parts of the 
same model simulation on a network of large number of processors thereby reducing the 
time needed to obtain solution.  
 Developing a parallel code requires considerable understanding of hardware 
architecture, model data structure and interprocessor communications in addition to 
parallel numerical algorithms to obtain high performance. The primary step in 
parallelizing a hydrologic model is to map out the problem on multi-processor 
environment. The problem must be broken down into a set of sub-problems that can be 
solved concurrently. This strategy of decomposing the modeling problem can be two 
types viz. task parallelism and data parallelism. In task parallelism a program can be split 
into independent pieces, often subroutines, which can be assigned to different processors 
and run concurrently. This essentially means different physical processes viz. surface 
water model, ground water model, land – atmosphere energy and water exchange, 



 

 

contaminant and sediment transport model, of an integrated hydrologic model will be 
solved on different processors. Task parallelism is also called "coarse grain" parallelism 
because the computational work is spread into just a few subtasks. It is often easier to 
implement and has less overhead than data parallelism. However since the various 
physical processes are strongly coupled to each other, the subtasks would need quick 
interaction between each other which would essentially destroy its “coarse grain” parallel 
structure. This kind of parallelism will be more suitable for integrated hydrologic models 
in which large physical components can be considered independent or very weakly 
coupled. Also since the computation time of various physical processes like overland 
flow and groundwater flow are significantly distinct owing to their varied time scales, 
time of computation on various processors will be different. The performance of the code 
is then limited by the slowest processor output. The remaining idle processors do no 
useful work. Task parallelism also limits the number of processors that can be utilized 
thus reducing the scalability of parallelization. In other parallelization strategy of data 
parallelism the same code segment runs concurrently on each processor, but each 
processor is assigned its own part of the data to work on. In this case the decomposed 
modeling domain on which the physical constitutive relationships are defined is allocated 
in chunks to different processors. Notably, data parallelism also provides single flow of 
control defined by Single-Program-Multiple-Data Model where the code is identical on 
all processors. Parallelized hydrologic model code obtained by following either of the 
aforesaid discussed strategies can be implemented on parallel shared memory processors 
or distributed memory processors. In shared memory computers, all processors have 
access to a single pool of centralized memory with a uniform address space. Any 
processor can address any memory location at the same speed so there is Uniform 
Memory Access time (UMA). Processors communicate with each other through the 
shared memory. Codes are also easier to program on it however they don’t scale much 
and architecture is limited to only a handful of processors. Contrary to this, though 
programming a parallel code on a distributed memory is complicated but these are quite 
scalable and can have support of even thousand processors. The total memory is 
partitioned into memory that is private to each processor and so the communication 
between processors takes Non-Uniform Memory Access time (NUMA). This means that 
farther the communicating processor, longer is the access time.  
 So an integrated hydrologic model code that is parallelized based on data-
parallelism scheme on a distributed memory can be expected to be scalable. However the 
speedup obtained from the parallel code will strongly depend on how the mapping of the 
model domain is performed on different processors.  
 This paper studies and compares the domain partitioning algorithms vis-à-vis 
Parallelized PennState Integrated Hydrologic Model (P-PIHM). Section II introduces the 
basic concepts of P-PIHM. Section II discusses some limited applications of domain 
partitioning in hydrology and will identify the factors that need to be addressed by a good 
domain partitioning algorithm incorporated in a parallelized integrated hydrologic model. 
Section III discusses several existing domain partitioning algorithm and suggests ways to 
incorporate the factors which will determine the efficiency of respective partitioning 
algorithms for hydrologic applications. Both the strengths and weaknesses of these 
algorithms will be discussed. Section IV discusses the results of application of 
partitioning algorithms in Great Salt Lake River Basin. Section V discusses the 



 

 

limitations of the existing algorithms and will make draw conclusions from the 
experiments presented in this paper.  
 
II.1. Parallelized Pennstate Integrated Hydrologic Model  

The parallelized version of PIHM (Qu and Duffy, 2007; Kumar et. al., 2007a) called P-
PIHM (Kumar et. al., 2007c), solves coupled physical hydrologic processes distributed 
over TINs. The basic idea of P-PIHM and PIHM is to first identify the physical 
hydrologic relationships which can be represented in form of partial or ordinary 
differential equations (PDE or ODE). By applying divergence theorem over a control 
volume, governing PDEs can be transformed to semi-discrete ODEs while ensuring mass 
conservation. The model is designed to capture “dynamics” in multiple processes while 
maintaining the conservation of mass at all cells, as guaranteed by the finite volume 
formulation. The advantage of finite volume formulation is that the user can incorporate 
the desired number of processes simply by setting on/off switches prior to simulation. In 
addition to this, it ensures mass conservation and also has ability to handle discontinuous 
solutions (Leveque, 2002). The “control-volume” in the finite volume formulation is a 
prismatic or linear physical element which is also called model kernel with all the 
constitutive relationships identified. Fig 2 shows a typical kernel defined on a triangular 
and a linear element (corresponding to rivers only) along with the interacting processes. 
The conservation laws that are conveniently derived from the physical relationships 
approximate the average state over the kernel volume [Leveque, 2002].  

The relevant ODEs defined on a kernel (Qu, 2004) are shown below in table 1. In 

Table 1, ij
sQ  is surface flow from element i  to its neighbor j . oP , I  and oE  are 

precipitation, infiltration and evaporation respectively. ocQ  describes interaction between 

overland flow and channel routing. 0q  is internal flux between unsaturated zone and 

saturated zone. I  and sET are incoming infiltration and outgoing evapotranspiration at 

land surface, respectively. cE  is evaporation from channel. ij
gQ  is lateral groundwater 

flow from element i  to its neighbor j . lQ  is vertical leakage through an underlying 

confining bed. gcQ  is discharge/recharge from/to aquifer to/from channel. inQ  and outQ  

are flow in and out of a channel segment. w  is snow melting rate, which is also an input 
to overland flow. 

 
Table 1: ODEs for the hydrologic processes defined on a kernel 
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Note that set of all the above differential equations defined on a kernel can be 
represented as   
 

))(;,(' yxytfMy        (1) 
 
where M is the identity matrix, y  is the state variable column vector with each row 
corresponding to   (unsaturated mean moisture depth), (saturated mean moisture 
depth), h  (overland flow depth) and   (channel flow depth) respectively. t  is time and 

x  is the forcing i.e. oP , I , oE , lQ , sET  and cE .  

Due to inherently different time scales present in different processes processes, 
the resulting system is likely to be “stiff”. An ODE solver called CVODE [Cohen and 
Hindmarsh, 1994] from Suite of Nonlinear and Differential/Algebraic equation Solvers 
[SUNDIALS, 1994], developed at the Lawrence Livermore National Laboratory (LLNL, 
2005) is used to solve large scale “stiff” ODE system.  

As is evident from the process equations listed in Table 1, the magnitude of the 
state variables on a kernel is dependent on those in the neighboring kernels and must be 
updated at each calculating time interval. On a serial computer this data transfer is 
accomplished by writing to and reading from memory. However when we map this 
computational grid to a parallel computer, two vertices joined by an edge and not owned 
by the same processor must communicate to exchange values. If, as is typically the case, 
communication is more expensive than computation. So a domain mapping strategy that 
minimizes it is desirable. Of course we could assign the entire grid to a single processor 
and have no communication at all, but that wouldn't be an effective use of the parallel 
machine since one processor would do all the work while the others remained idle. We 
must therefore also observe the important constraint that each processor should be 
assigned about the same amount of work and therefore (in the simplest case) the same 
number of vertices. This means a classic domain-decomposition strategy as discussed in 
Gilbert et. al., 1995 or Simon, 1991 fails to provide performance gains. 



 

 

In P-PIHM each processor does a portion of the work that is assigned to it while 
interacting with its peers to exchange data. Implementation of the parallelized model is 
performed using parallel version of CVODE solver also called PVODE. PVODE uses 
MPI and a revised version of the vector module in CVODE to achieve parallelism and 
portability. PVODE is intended for SPMD (Single Program Multiple Data) environment 
with distributed memory in which all vectors are identically distributed across processors. 
However mapping of parts of the model domain should be devised for proper load 
balancing and efficient communication between jobs on different processors  
 
II.2. Domain Partitioning 
 
 In one of the preliminary investigation on domain partitioning for parallelization 
of tRIBS (Ivanov et. al., 2004), Vivoni et. a. (2005) integrated hydrologic model, chunks 
of tasks on subbasins were used to be fed to different processors for calculation in 
parallel. The problem with this is highlighted in Fig. 3 which shows how the number of 
unit cells or TINs generated within each sub-basin is significantly different. This 
essentially translates to different computation time on different processors. The efficiency 
of parallelization will ultimately be defined by the processor with largest computational 
load and is slowest. Cui. et. al., 2005 also partitioned the watershed into subbasins but 
tackled the problem of load imbalance by redistribution of load between processors using 
sending by pairs, sending circularly and sending by percentage methodology to send data 
from overloaded to underloaded processors in order to balance load among processors. 
The experiment is interesting however it involves lot of communication between 
processors which could have been completely avoided by partitioning the domain such 
that load is balanced. More so these strategies consider hydrologic independence between 
sub-basins which will be true only when the distributed hydrologic model doesn’t takes 
care of groundwater flow and flow through river from on sub-basin to another. If these 
hydrologic interactions are taken into account, it will be very difficult to keep track of the 
load as well as associated communication from and to various unit cells of the sub-basin 
when they are being shared all around the processors in order to balance load.  So the 
aforesaid partitioning is quite ineffective not only because the size of sub-basins can be 
significantly different leading to load imbalance between various processors but also the 
communication cost can be large. Also such strategies are adhoc and provide solution to 
only a given problem at hand. They will have to be reposed in order to take into account 
the heterogeneity of communication between various unit cells in the basin and 
architectural heterogeneity. 

Partitioning should reflect the basic requirements of parallel processing like  
a) To ensure that all processors have the same amount of work to do or to perform Load 
Balancing. Load balancing is the technique of evenly dividing the workload among the 
processors. Load balancing is important because the total time for the program to 
complete is the time spent by the longest executing thread. This means that a perfectly 
load balanced code will have least computation time given a particular number of 
processors. 
b) To minimize interprocessor communication. Communication time is the time it takes 
for processes to send and receive messages. The cost of communication depends on the 
amount and frequency with which data is communicated between processors and latency 



 

 

and bandwidth of the interconnection network. Latency is the time it takes to set and 
prepare a complete communication for a message length of size zero, where bandwidth is 
the actual speed of transmission, or bits per unit time. This time must be minimized to get 
the best performance improvements from a parallel program. Even though the number of 
communication is lot less than the computations, since the cost of accessing memory on 
other processors is about 10 to 1000 times larger than that of accessing it locally, 
minimizing communication becomes crucial. By overlapping communication and 
computation, idle time of the processors can be minimized. This involves computations 
performed way inside the solution domain which is temporarily independent of the 
changes in state variable taking place at the interfaces while the peripheral neighbors take 
part in communication. 
 
Factors affecting load balance and interprocessor communication 
 
a) Hydrologic Factors 
 

i) Number of hydrologic processes incorporated in the model, whose value at a 
particular discretized element also depends on its values in its surrounding; determine the 
amount of interprocessor communication. 

ii) Process Coupling: It is increasingly common to couple multiple physical 
phenomena e.g sediment, contaminant and water transport into a single simulation. The 
amount of communication is strongly dependent on the method of coupling incorporated 
in the model. It is of two types: a) artificial coupling, where processes operate at time 
steps consistent with their own appropriate temporal scales and are updated with other 
interacting processes as and when there time steps coincide. This strategy is followed in 
tRRIBS (Ivanov et. al., 2004) and MIKE SHE hydrologic model. Prima facie it appears 
that because of the limited amount of sharing between faster and slower processes, 
communication requirements will be smaller in artificial coupling. However, as has been 
noted in Panday and Huyakorn, 2004 and Kumar et. al., 2007a, artificial coupling 
strategy can be more computationally taxing because of its difficulty in convergence 
(Perkins and Koussis, 1996; Beven, 1985 and Refsgaard and Storm, 1996) which can 
only be offset by taking very smaller simulation steps. The other coupling strategy is b) 
natural coupling, where the simulation proceeds at self adaptive time steps depending on 
the characteristic time scales of the interacting system. This strategy is followed in P-
PIHM hydrologic model. Particularly in situations where a faster process like overland 
flow is not happening for most of the simulation period because of any of the numerous 
reasons like less precipitation forcing, high infiltration rate and dried water table, natural 
coupling will be all the more efficient as it will adaptively revert to larger time steps in 
those situations as has also been witnessed by Kumar et. al., 2007a..   

iii) Topology: Number of neighbors of a particular element is determined by the 
shape of unit elements and the topological relations between different feature types. The 
maximum number of communication interface for a grid will be equal to 4* (Number of 
state variable whose value depends on the states in neighboring cells) + River upstream-
downstream topology dimension. For triangular unstructured grids, number of 
communicating interface between elements will be 3.  



 

 

iv) Heterogeneous Computational Load: Processors can take significantly 
different time to solve system of ODEs defined on two different model kernels using a 
same ODE solver depending on the characteristic time scale and degree of stiffness of the 
ODE system in different regions of the model domain which in turn depends on the 
values of forcing, parameters and the physical processes acting on each model kernel. For 
example, a smaller Manning’s coefficient and a large infiltration rate will further 
decrease the time scale of overland flow process in a model grid with respect to ground 
water flow leading to more number of iterations in the solutions of coupled ODEs 
corresponding to both the processes. Infact with increasing stiffness of the coupled 
system, the number of iterations for convergence increases (Kumar et. al., 2007a.). This 
means that in a distributed model, the heterogeneity in forcing and parameters will keep 
influencing the synchronicity at each solution time step across different processors. We 
note that the computational load will be varying spatio-temporally. 

v) Heterogeneous Communication: Amount of communication between 
neighboring model kernels located on different processors is determined by the number 
of processes defined on the model kernel which need information about state variables 
from the adjacent kernel. Table 2 shows that the amount of communication performed 
between neighboring elements in a simplified two layered (unsaturated and groundwater) 
conceptualization of P-PIHM, at each simulation time step is different in different parts 
of the model domain. Similar will be the case with other hydrologic models. Fig 4 
represents the unit model element and the communicating processes between them for 
two hydrologic models – one based on grids and other on TINs. This heterogeneity in 
communication needs to be incorporated while partitioning the model domain. Also, the 
difference in timescale of various hydrologic processes like overland flow and 
groundwater flow can be used to our advantage in order to further improve the efficiency 
of the code by performing updates of groundwater variable on the boundary cells at 
relatively longer time intervals with respect to the model time interval. For example, if 
the overland flow model simulation is being carried out at time step n, groundwater flow 
across the subshed boundaries can be calculated at 5*n only. The underlying assumption 
here would be that a change in the subsurface storage is very slow relative to the overland 
flow. However, this methodology will be more fitting to models based on artificial 
coupling only whose limitation have already being pointed out in the discussion above. 
 

Table 2: Size of communication packet for different elements of the model domain 
 

Elements Shared Processes Total Communication 
Triangular 

Elements besides 
Subshed 
boundary 

Sub-surface flow 1 

Triangular 
Elements besides 

River 

Upstream flow, Downstream flow, 
Subsurface flow between triangular 

elements on either side of river, 
Leakage/Base flow from/to the river to 

triangular element, Overland flow to/from 
river  

5 



 

 

Triangular 
elements 

Overland flow, Sub-surface flow 2 

 
 
b) Architectural factors 
 

i) Interconnect property and type: The interconnection network are wires and 
cables though which the multiple processors of a parallel computer are connected to each 
other and to the memory units. The communication time is dependent upon the specific 
type of the interconnection network and its properties like latency, bandwidth, diameter 
and degree. Latency is the delay on a network that occurs while a data packet is being 
stored and forwarded. Bandwidth determines the amount of data that can be sent through 
a network connection. Diameter is the distance between two processors that are farthest 
apart. Degree determines the number of communicating wires coming out of each 
processor. A smaller latency and diameter, and a larger bandwidth and degree are desired 
for shortest communication time.  
 Topology of the interconnection network also determines the chances of network 
congestion when a message is sent between distant processors. This is because while the 
interconnection is transferring messages, the wires are rendered unavailable to transmit 
other messages. Commonly used network topologies are Bus, Cross-bar switch and 
Hypercube. Bus based interconnections are more prone to have contention for access than 
cross-bar switch. The advantage with Hypercube interconnections is larger degree with 
increasing size of network. Hence when network congestion is important, weighting 
messages by the number of wires they use will lead to better domain mappings to 
distributed processors.  
  Many at times, the distributed processor are also connected heterogeneously, with 
communication occurring within a group and between groups of processors. The disparity 
between communication time between the local and remote connections needs to be 
incorporated in a domain partitioning strategy. Heterogeneity in data transfer can also be 
because of different network interfaces and protocols. 

ii) Heterogeneous Processors Speed: Heterogeneous clusters can have individual 
nodes with varying processor speeds. This is particularly likely for Beowulf cluster of 
PCs built with commodity-off-the-shelf equipment where faster machines with larger 
memories are continually added to the system or replaced for slower nodes. The 
consequence of this is to be able to delay the obsolescence of older technologies thus 
further reducing the cost of high performance computing. In order to minimize the idle 
processor time for computing on heterogeneous clusters, the work over them should be so 
distributed such that no processor is waiting for the completion of another. Thus the 
partitioning algorithm for a heterogeneous processor configuration should be able to 
incorporate asymmetric load balancing. 

Considering the architectural and hydrologic factors that influence load balance 
and communication between processors, the problem now is that of how to decompose 
the mesh into subdomains while incorporating the needs of an efficient parallel 
computation. This essentially translates to a set of minimization (or maximization) 
problem as discussed above, given an arbitrary number of balancing constraints like 
heterogeneous communication and processor speeds. Many of these partitioning 



 

 

problems can be formulated in terms of an undirected communication graph. The 
communication graph describes the relationship of computation on the mesh by 
connecting unit elements which share information between each other. If the numerical 
algorithm (finite difference, element or finite volume) has a node based data structure, 
meaning that the state variables e.g. hydraulic heads in a hydrologic model are defined on 
the mesh nodes and fluxes along the edges, then any updates of state variable over time 
will also require data from neighboring nodes. Therefore the communication graph in this 
case is essentially the computational mesh itself, with mesh nodes being the graph 
vertices and edges of the mesh being the edges of the graph. The other kind of data 
structure can be element based where the state variables are defined on the elements and 
fluxes are calculated across the interfaces of neighboring elements. In this case vertices of 
the communication graph are essentially the centroid of the elements, and the edge of the 
graph is the connecting segment joining two vertices lying in the neighboring elements 
that share a face with each other. Such a graph is called the dual graph of the mesh. This 
approach is explained in detail in Hu and Blake, 1999. Fig 5 shows the dual graph for 
unit elements for three different hydrologic models viz. ModHMS (Panday and 
Huyakorn, 2004), PIHM and ELCIRC (Zhang, et. al., 2004) respectively on an 
experimental rectangular model domain. We note that unit element shapes for each of 
these models is different viz. rectangular (structured mesh) for ModHMS, triangular 
(unstructured mesh) for PIHM and mixed mesh for ELCIRC. 

The problem of efficient portioning can now be defined on the dual graphs. Given 
a dual graph G with n weighted vertices and m weighted edges, the objective is to divide 
the vertices into p partition sets in such a way that the sum of the vertex weights in each 
set is as close as possible and the sum of the weights of edges crossing between sets is 
minimized. The weights on the vertices and edges are generally proportional to the 
computation load on the elements and communication amount across the element face 
respectively. The posed problem is NP-complete and so it’s hard to obtain the global 
optimum solutions. Therefore several near-optimal approximate, probabilistic and 
heuristic techniques have been explored to solve the problem (Walshaw and Cross, 1999; 
Hu and Blake, 1999; deCougny et. al., 1994; Simon, 1991).  
 
III. Domain Partitioning Algorithms 
 
Some of the prominent heuristic methods and their characteristics are briefly discussed 
below. Many of these are bisection based which essentially means dividing the domain 
into two subdomains and to perform divisions recursively on the obtained subdomains.  
 
a) Inertial Bisection: The recursive inertial bisection (RIB) algorithm (Hendrickson and 
Liland, 1994) is a coordinate based method which tries to find a principal axis hyperplane 
of the communication graph thus dividing it into two parts. The principal axis is the line 
from which the sum of the squares of distances of the mesh nodes is smallest. The 
method is rotationally invariant unlike other geometric bisection algorithms like recursive 
coordinate bisection algorithm (Williams, 1991). The algorithm has a low complexity 
of )(nO . 
 



 

 

b) Greedy Method: This algorithm (Farhat, 1998) is one of the simplest and fastest graph 
based partitioning method. Assuming that desired number of partitions is p and the total 

number of nodes is n, first 
p

n
 nodes are coded in a partition i by including all the 

neighbors of a node location with minimum number of neighbors and also the neighbor’s 
neighbors. The process is repeated for rest of the domain until all the nodes have been 
assigned to a partition. The algorithm has a low complexity of )(nO .  
 
c) Graph Bisection: The recursive graph bisection (RGB) algorithm (Williams, 1991) 
first finds a set of pseudo peripheral nodes (PPNs) which are basically the two vertices 
that are the furthest apart (their distance is called the diameter of the graph). Then, 
starting from either of the PPNs , half of the graph nodes that are closer to either of the 
PPNs are assigned to two separate partitions. This process is then recursively executed on 
each of the subdomains. The graph bisection algorithm has a complexity of )(nO .  
 
d) Spectral Bisection: The recursive spectral bisection (RSB) algorithm (Pothen et. al., 
1990; Simon, 1991) is a discrete optimization method. By assigning each nodes of the 
graph with a value of either 1 or -1, and defining the edge-cut for the bisection by 
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where ji   is an edge connecting the nodes i  and j  respectively in partition V, the 
communication can be minimized by minimizing Ec while ensuring  
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Also noting that all the nodes take the value of 1 or 1 , the sum of the squares should be 
n , the number of nodes. This gives the extra constraint  
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where D and A are diagonal matrix, with degree of the nodes on the diagonal, and 
adjacency matrix respectively. Defining Laplacian matrix of the graph as L= D – A, the 
aforesaid optimization problem with constraints can be rephrased as  

LxxE T
c 4
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The eigenvector corresponding to second lowest eigenvalue of the matrix L, also called 
Fiedler vector, is used to divide the nodes into two halves. The procedure can then be 
repeated on each of the subdomains. 
 
e) Multilevel partitioning: The spectral bisection method discussed above is very 
computationally intensive because of the eigenvector solution. Multilevel methods 
(Barnard and Simon, 1993) speeds up the computation of Fiedler vector still generating 
high quality partitions. The algorithm is based on the multilevel approach normally and 
consists of three phases viz. 

i) coarsening phase: the original graph is reduced into a levels of successively 
coarser graphs  

ii) partitioning phase: the coarsest graph is partitioned into p parts 
iii) uncoarsening and refinement phase: the partitioning of the coarsest graph is 

interpolated to a finer level graph and refined. The process is repeated till refinement 
reaches the original graph level.  
 
The coarsening is achieved by choosing the maximal independent set (MIS) as the 
vertices of the coarse graph. MIS is a set of vertices such that no two of them are 
connected by an edge and if the addition of even a single vertex will violate this criteria. 
The edges of the coarse graph are weighted to reflect the number of edges in the original 
graph. By using several levels of coarsening a much smaller graph can be obtained which 
can be easily and rapidly partitioned by other graph partitioning methods like graph or 
spectral bisection. Infact Karypis and Kumar, 1995 observed that the choice of 
partitioning algorithm applied at coarsest scale has almost no bearing on the final quality 
of partition because of refinement performed in uncoarsening phase. In uncoarsening and 
refinement phase, the partitioning information are transferred up through the levels to the 
original graph using methods like eigenvector interpolation. 
 
f) K – L Algorithm: The K-L (Kernighnan-Lin) algorithm (Kernighan and Lin, 1970) is 
an iterative algorithm that tries to iteratively improve random load balanced partitions. 
The algorithm tries to exchange the vertices from one partition of the graph to the other in 
order to reduce the edge cut till all the nodes of the smaller partition have been swapped. 
The procedure is repeated even if there are no more improvements made and continues 
even when the highest gain may be negative thus enhancing its ability to climb out of 
local minima. The algorithm has a complexity of )( EO  where E is the number of edges. 

For large graphs, the algorithm is quite inefficient and so is now used for local refinement 
of partitions obtained by algorithms discussed above.  
 
g) Hybrid Algorithms: These are basically combination of two or more algorithms, one 
suited for global partitioning and the other for local partitioning only due to its 
computational intensiveness, that work in unison to give better results. K-L algorithm 
have often been used as the local search algorithm to improve partitions generated by ML 
algorithm (Karypis and Kumar, 1995), RSB and RGB algorithm  (Fowler and 
Greenough, 1998). 
e) Other partitioning algorithms: Many other geometric and graph partitioning methods 
exist like coordinate bisection method (Williams, 1991), linear method, simulated 



 

 

annealing (Mansour, 1992), generic algorithms (Bui and Moon, 1996) etc. While 
coordinate bisection method is anisotropic, simulated annealing and genetic algorithm 
based methods are computationally intensive though they also produce high quality 
partitions. Algorithms which take into account the physical equations for finite element 
based solution of PDEs (deCougny et. al, 1994;. Vanderstraeten and Keunings, 
1995)have also been developed 
 
IV. Results 
 
All the above algorithms for domain partitioning are applied on unstructured domain 
decomposition of Great Salt Lake Basin. The mesh has been generated by using 
topographic and hydrologic features as internal boundary constraints. The topographic 
features such as subshed boundary essentially divides the basin in four subsheds viz. 
Weber River, Bear River, Utah Lake and Western Desert with corresponding areas 
varying from 6413 km2 to 49117 km2.  The discretized domain is then partitioned in order 
to assign different computational model kernels to different processors. As is evident 
from the huge variation in area of the subshed, if the average resolution of unit elements 
within each subshed is same then the time of computation for each subshed will be vastly 
different. We note that the measure of amount of communication used in the following 
discussion is the cumulative weighted edge cut at each interface unless otherwise 
mentioned.  
 
a) Homogeneous Communication: Fig 6 shows the partitioning of the decomposed 
domain using inertial, greedy, recursive graph bisection, recursive spectral bisection, 
random Kernighan-Lin method and Multi-Level method based on spectral algorithm. As 
can be seen from the Fig 6, only RSB and ML generate all contiguous partition which is 
paramount particularly in fully coupled hydrologic modeling where the granularity is 
very fine. Non-contiguous partitions also suffer from message congestion as they will 
have to generally travel longer distances and larger number of neighbors to fetch data. 
Disconnected and long partitions with large surface to volume ratio, as is the case with 
partition generated using inertial bisection algorithm is not desirable. However, it also has 
a relatively smaller number of neighboring partitions which remarkably decreases the 
message startup time. Partitions produced by RGB are found to be compact, rough and 
disconnected. Domains generated by both RSB and ML algorithms are smooth, compact 
and connected. Quantitative comparison of the methods is shown in the Fig 7. Among the 
basic methods, KL algorithm outperforms other algorithms in minimizing interface 
communication whereas ML method based on spectral bisection algorithm outperforms 
the rest in minimizing congestion and message startup time which essentially depends on 
the average number of neighboring partitions. Ranking wise, RSB algorithm is found to 
perform best on an average for both criteria. This is because the RSB algorithm captures 
the global property of the dual graph by calculating Fiedler vectors. The hybrid variant of 
RGB, RSB and ML algorithms with KL based refinement leads to improved performance 
in terms of decreased communication and number of neighboring partitions, except for 
ML_KL method where number of neighboring partition increases w.r.t ML method. 
Depending on the relative time taken by the parallel hardware architecture in 
communication and startup, the number of times synchronization is forced between 



 

 

processors and new communication is initiated (will also depend on the software coding 
strategy), and the length of the model simulation, decisions can be made by the user to 
give preference to a particular property and hence a particular algorithm. RSB_KL 
outperforms all the considered algorithms in minimizing communication volume. We 
note that KL refinement on RGB, RSB and ML increases the number of neighboring 
partitions. For larger domain size (number of graph nodes) ML algorithm is found to be 
computationally efficient than RSB based methods (Karypis and Kumar, 1995). So 
computation time saved due to less communication in RSB_KL algorithm can be offset 
by time it takes to derive the partition in the first place for very large graphs. This will 
particularly be crucial while performing spatio-temporal adaptive refinement/de-
refinement of decomposed domain and during dynamic partitioning of the model domain 
due to spatio-temporal heterogeneity in computational load, as in these cases partitioning 
code has to be called numerous times.  
 
b) Heterogeneous Communication: In real hydrologic applications, the communication 
requirements across processors will be generally heterogeneous. As shown in Fig 8, the 
amount of communication between neighboring elements in different parts of the model 
domain is different. This heterogeneity can be incorporated in graph partitioning 
algorithms by assigning weights to the edges of dual graph proportional to the amount of 
communication. A detailed discussion of RSB and ML algorithms where vertex and edge 
weights are modified to account for computational and communication heterogeneity is 
discussed in Hendrickson and Leland, 1995a,b respectively. Fig 9(a) shows the mapping 
of decomposed GSLB into 16 partitions using hybrid RSB_KL and ML_KL algorithms 
while considering heterogeneity in communication. The obtained partition has far less 
communication with respect to the case with no weights assigned to graph edges. Infact 
Fig 9(a) clearly shows the tendency of partition boundaries to align along the subshed 
boundaries because of relatively lower communication requirement across them. In order 
to study the effectiveness of the algorithm at various scales, the domain is decomposed 
into 979, 1295, 2232 and 4566 triangles respectively. Accounting for heterogeneity 
consistently leads to decrease in communication volume to the order of 75 to 85 %. Also 
RSB_KL algorithm performs better than ML_KL at almost all scales. Weight 
assignments performed in Table 1 according to the process interaction that are shown in 
Fig 8 can be further made favorable  by decreasing weights for groundwater flow 
particularly along the subshed boundaries, which are by-the-way often considered as 
groundwater divide also, to take advantage of the fact that groundwater processes have 
relatively longer time scales at most of the places and can be considered to be non-
dependent on the groundwater head of the neighboring element that lies across the 
watershed-divide. However, we note that such partitioning will introduce error in 
modeling and should be only implemented after studying the tradeoff between 
computational accuracy and load.  
 
c) Heterogeneous Processors: If the processors used for computation have different 
speeds, then the load divided between them can be balanced by distributing the number 
of elements in proportion to processors speed. Fig 10 shows the partition of GSLB into 
16 partitions using RSB algorithm on homogeneous and heterogeneous processors. The 



 

 

size of the partitions that are assigned to a faster processor increases in proportion to the 
processor speed.  
 
d) Message Congestion in Interconnect: Interconnection topology and sequence of 
assignment of partitions to processors significantly affect message contention costs. Since 
network contention renders the network unavailable to transmit any more messages, it 
should be minimized. Hendrickson et. al., 1996 addressed this issue for ML and RSB 
algorithm using a method called terminal propagation which basically improves the data 
locality by including the processor location information in partitioning. The goal is to 
partition the domain such that processors sharing information are mapped closer together 
in the interconnect topology. This results in a message traveling between two processors 
to traverse least distance. Fig 11 shows the advantage of termination propagation in 
reducing the hop cost for spectral partitioning algorithm. However, this also results in 
increase in the number of edge costs and hence the communication volume. So depending 
on the relative time spent in starting send/receive operation and the time the message 
takes to traverse between processors , terminal propagation should be taken into account. 
  
e) Refinement of Global partitioning algorithms: As shown in Fig. 7, global partitioning 
methods are observed to perform better in unison with local refinement methods such as 
using KL algorithm. The refinement can be carried out after each time a graph is 
recursively bisected or on the final partition. Also, refinement can be performed either on 
the boundary nodes only or can involve repeated passes over all vertices to find a better 
configuration. Fig 12 shows the relative communication (characterized by edge cuts and 
hypercube hops), computation (characterized by number of internal vertices) and start-up 
message time (characterized by average number of neighboring sets) for RSB algorithm 
by refining the partitions by KL algorithm with different number of refinement sweeps. 
Edge cuts determines the communication volume while Hypercube hops based 
communication measure also takes into account the architectural distance between 
processors which a particular message will have to traverse. With the application of KL 
algorithm on the boundary vertices only, there is a significant improvement in 
communication and startup time criteria. The performance further improves marginally 
when internal vertices are also considered in refinement. However, larger number of 
sweeps on internal vertices slows the process.  
 
f) Limitation of communication measure: Effectiveness of any of the partitioning 
algorithms can only be translated in real modeling application if the communication 
measure takes into account all the hydrologic and architectural factors discussed above. 
But first and foremost the basic assumption of the communication measure which have 
been implemented in most partitioning softwares i.e. use of weighted edge-cut should be 
true. Hendrickson and Kolda, 2000 pointed out that existing measure to calculate 
communication volume can fail in certain situations. For example, edge cuts of the dual 
graph might correspond to transferring the same data from one partition to the other. This 
is generally the case with converging or diverging edges connecting nodes which belong 
to different partitions. The idea is shown in Fig 13 using a schematic two partition 
domain. Though grids A and B in Fig 13 need to send only one information each to the 
neighboring partition, the number of edge-cuts accounted for during partition is 3 and 2 



 

 

respectively. But this also depends on the fact how communications between different 
paritions are coded in the model. The communication measure to derive partitioning, and 
the data structure of the buffer that is actually used to perform communication through 
MPI should be consistent. Also as have been pointed out earlier, multiple objectives that 
will ultimately determine the performance of partitioning in a real application can not be 
satisfied all together. An alternate single objective measure can be derived that uses the 
startup or latency time with communication volume. Fowler and Greenough, 1998 use 
one such measure called Communication Time which can be defined by 

      Communication Time (CT) = 
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Where 
 startt is time to initialize communications 

 sendt  is time to send one byte 

 iN  is the number of neighboring subdomains 

 iI  is the number of interface nodes associated with partition i 

 tN is the total number of neighbors 

 
This measure assumes that only one message can be active at a time and the total time 
spent in communication is just the sum of all the communication times for individual 
partitions (Fowler and Greenough, 1998). The communication time measure based 
partitioning will obviously be subjective to a given interconnect topology and parallel 
hardware architecture. Fig 14 shows the relative communication time taken by four basic 
algorithms discussed in this paper. The typical startup and send time used in the 
calculation is of Intel parallel supercomputer ipsc/860 such as on in Oakland National 
Laboratory (data used from Fowler and Greenough, 1998). The processor nodes are 
assumed to be connected in hypercube architecture. For larger number of partitions, RSB 
proves to be most efficient. We note that even this measure doesn’t takes into account 
message contention, multihop costs, message length dependent buffering and coding 
strategy.  
 The partitions in this paper have been generated using codes from some of the 
state-of-the-art partitioning softwares like CHACO (http://www.cs.sandia.gov 
/CRF/chac_p2.html), JOSTLE (http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/), METIS 
(http://glaros.dtc.umn.edu/gkhome/views/metis/) and RALPAR (http://www.softeng.cse. 
clrc.ac.uk/ralpar/). 
  
 
V. Conclusions 
 
This paper highlights several issues which need to be taken care of while doing efficient 
partitioning for a parallelized hydrologic model. These issues can be hydrologic in terms 
of time scale of hydrologic processes which determines the computational load at a 
model kernel and also the frequency of communication needed, number of interacting 
processes, coupling behavior, numerical solution strategy and unit element shapes of 



 

 

decomposed domain. Nine domain partitioning algorithm have been implemented on a 
unstructured grid domain of Great Salt Lake basin. Recursive spectral bisection algorithm 
refined by KL algorithm is found to outperform the other algorithms in minimizing 
communication. The present best-partitioning measures are multi-objective in nature and 
the tradeoffs have to be accounted for between objectives before any particular 
partitioning can be applied in real hydrologic model simulation. 
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Fig 1: Sharp increase in ModHMS hydrologic model simulation time at White Water 
Basin, Kansas with increasing model complexity. Abbreviations: GW (Ground Water 
flow), Ch (Channel flow), Unsat (Unsaturated zone flow), IN (Interception). 
 
 

 
 
Fig. 2: Interacting hydrologic processes on each prismatic element (left) and on each 
linear river element (right). ODEs corresponding to all these processes is termed as model 
“kernel”.  
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Fig. 3: Partitioning the model domain according to subshed leads to load imbalance. Note 
that the number of unit model kernels and so the number of ODEs defined on different 
subsheds is different.  
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Fig. 4: Model unit kernel for a) ModHMS and b) PIHM. Note that the maximum possible 
amount of communication across the kernel face will be: (Number of  River segments 
entering and going out through kernel face) + (NLayer for subsurface flow) + (4 units of 
Overland Flow communication) for ModHMS. For PIHM, maximum communication 
across as face will be: 2 (Upstream and Downstream) + 2 (Leakage/Baseflow to adjacent 
subsurface element, weirflow/overland flow between river and adjacent element) + 
(NLayer for subsurface flow) + (3 units of Overland Flow communication).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Dual graphs and the discretized model domain for a) ModHMS [solution strategy 
= finite difference] b) P-PIHM [solution strategy = finite volume] and c) ELCIRC 
[solution strategy = finite difference and volume].  Decomposed unit element shape in 
model (a) = Structured Grid, (b) = Unstructured Grid (Triangles) and (c) = Unstructured 
Grid (Triangles and Quadrilateral). Note that all of above three models are block 
centered. 
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Fig 6: Partitioned domain for Great Salt Lake Basin (total number of unstructured grids = 
4566) into 16 partitions. Algorithm used in partitioning is a) Inertial b) Greedy c) 
Recursive graph d) Recursive spectral e) Random KL and f) Multi-Level. Assumption: 
Homogeneous communication across the unstructured grid edges.  
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Fig 7: Relative values of communication and average number of neighboring partitions 
for different partitioning algorithms. IN is Inertial, GR is Greedy, RGB is Recursive 
Graph Bisection, RSB is Recursive Spectral Bisection, KL is Kernigham-Lin, ML is 
Multi Level (based on RSB) and RGB_KL, RSB_KL and ML_KL are hybrid methods 
with location refinement being performed using KL method. Hybrid methods perform 
best atleast in minimizing communication volume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 8: Heterogeneous communication exists in different parts of the model domain 
because of existence of disparate hydrologic features with different kinds of interacting 
processes.  
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Fig 9 (a): Mapping of GSLB into 16 partitions without (left) and with (right) 
heterogeneous communication taken into account using RSB_KL (top) and ML_KL 
(bottom) algorithm respectively. Note the alignment of partition boundary to subshed 
boundary (particularly in bottom right figure) because of less communication across 
them. 
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Fig 9(b): Percentage edge cuts for without and with heterogeneous communication taken 
into account in ML algorithm. Increasing decomposition level 1,2,3 and 4 denote higher 
level of discretization of the model domain with 979, 1295, 2232 and 4566 unit elements 
respectively. Wth and Wout stands for “With heterogeneity in communication 
consideration” and “Without heterogeneity in communication consideration” respectively 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
Fig 10: Partitioning of GSLB using RSB algorithm into 16 partitions. In the right figure, 
heterogeneous processor speeds have been considered with the relative speeds assigned 
as partNo(1,2,3,4) = procSpeed(1), partNo(5,6,7,8) = procSpeed(2), partNo(9,10,11,12) = 
procSpeed(3) and partNo(13,14,15,16) = procSpeed(4). Note the increase in size of 
partitions that are assigned to faster processors. 
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Fig 11: Terminal propagation reduces hypercube-hops. EC = Edge-Cuts, HH = 
Hypercube-Hops, AS =  Average Adjacent Sets and IV = Internal Vertices. One the one 
hand accounting for terminal propagation in partitioning reduces HH, on the other it 
increases the EC. Tradeoff have to be evaluated before a real model simulation. 
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Fig. 12: Relative communication (EC = Edge-Cuts, HH = Hypercube Hops), computation 
(IV = Internal vertices) and message start-up time (AS = Number of Adjacent Sets) for 
partitions generated by global RSB algorithm and further refinement by local KL 
algorithms with refinement performed on boundary vertices (KL) and on all vertices with 
one and two sweeps (KL_Ref1 and KLRef2) respectively. 
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Fig 13: Partitioned domain for mixed unstructured grid (shown in Fig. 5) into two 
partitions. Note that number of grids in green partition which share a face with red 
partition is 12, however number of edge cuts is 19.  
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Fig: 14:  Comparison of Total Communication time (startup + exchange) for Inertial, KL 
with random initial partition, RGB and RSB algorithms. Total Communication time 
presents a single objective measure that can be optimized by partition, but this also 
doesn’t take into account message contention.  
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