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ABSTRACT 
 

Researchers have maintained discussion regarding the effectiveness of distributed, 

physical hydrologic models as river forecasting tools compared to the lumped, conceptual 

models currently used prevalently in the National Weather Service River Forecasting 

Centers.  We assess the river forecasting capabilities of the distributed, physically-based 

Penn State Integrated Hydrologic Model, coupled with the Noah land surface model 

(Flux-PIHM), in comparison to the lumped, conceptual Antecedent Precipitation Index 

(API)-Continuous model.  We produce and analyze reanalysis model discharge output 

from Flux-PIHM and the API-Continuous model for the year 2010 at the Spruce Creek 

stream flow gauge in the Little Juniata River Basin in Central Pennsylvania.  Twelve 

precipitation events were selected from the year 2010 for further analysis.  We evaluate, 

in relation to USGS stream flow observations, each model’s ability to accurately simulate 

peak discharge magnitude during a storm event, the elapsed time between the start of the 

event and the occurrence of the peak discharge value and the total runoff.  We also 

compare multiple precipitation datasets to determine the effects that alternative forcing 

data may have on model output.  Results indicate that, among other trends, Flux-PIHM 

overestimates base flow and peak discharge during the winter months while more 

accurately simulating peak discharge in the summer months compared to API-

Continuous.  Furthermore, both models simulate shorter time to peak discharge compared 

to observations for a majority of the events.  Many of the possible causes for the 

identified trends in this study point to a need for various improvements to Flux-PIHM 

and API-Continuous calibration and parameterization.  
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Chapter 1 

 

Introduction 

During the last decades, due in part to increases in computing power, scientists have 

continued to develop hydrologic models of greater complexity in an attempt to best 

mimic the natural processes governing the movement of water within a basin.  In recent 

years the field of hydrology has focused on determining whether applying these more 

complex models to an operational river forecasting setting is worthwhile and feasible 

(Clarke et al., 2008). 

Hydrologic models are generally grouped into two categories: lumped or 

distributed models.  In lumped models, spatial variation is ignored and the entire basin of 

study is considered to be one unit. These models are normally designed to simulate 

stream flow at a basin outlet only (Moradkhani & Sorooshian, 2008).  The earliest 

lumped models relied solely on techniques such as the unit hydrograph theory and the 

Nash linear cascade of reservoirs model (Solamatine & Ostfeld, 2008).  Conversely, 

distributed models account for the spatial variation of parameters and variables within a 

basin (Moradkhani & Sorooshian, 2008). Distributed models can create simulations for 

interior points in a basin and ungauged sites (Smith et al., 2004a).  Distributed model 

development has benefited from a growing availability of spatially variable 

meteorological data. 

 Hydrologic models can also be identified based on the complexity with 

which they represent the driving processes of the water cycle.  On one end of the 
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spectrum are empirical models, based on relationships between input and output time 

series. These models solely use basic statistical techniques such as linear regression 

(Solamatine & Ostfeld, 2008; Kampf, 2006).  Models, generally those with some 

intermediate level of complexity, can also be classified as conceptual. Conceptual models 

are highly parameterized and contain some representation of the natural processes at 

hand.  Both lumped and distributed conceptual models exist.  Finally, models can be 

categorized as physically based.  The physical approach offers the most detailed 

representation of hydrological processes, using partial differential equations to represent 

and simulate the various interactions and processes within a basin (Moradkhani & 

Sorooshan, 2008).  Examples include the Michael B. Abbott Systéme Hydrologique 

Européen (MIKE SHE) model and the River Basin Simulation Model (RIBASIM) 

(Solamatine & Ostfeld, 2009), as well as the Penn State Integrated Hydrological 

Modeling System.  The increase in model sophistication over past decades has enhanced 

the detailed nature of physically based models, but as Beven (1989) emphasizes, even the 

most complex models are still an extreme simplification of reality. 

 Given the various types of models available, a point of debate in the 

scientific community has been determining which technique is most beneficial for river 

forecasting, and for what scenarios.  Several studies have been conducted to offer some 

response to this question.  The National Weather Service (NWS) Office of Hydrologic 

Development has compared a collection of distributed models to the lumped, conceptual 

models used for river forecasting today.  The study, the Distributed Model 

Intercomparison Project (DMIP), was conducted in two phases.  Phase 1, completed in 

2004,  is outlined in Smith et al., (2004a) and Phase 2, completed in 2011, is outlined in 
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Smith et al., (2012a).  In Smith et al., (2012b), the DMIP experimenters concluded that 

although distributed models have improved as a river forecasting tool, these models only 

outperformed the lumped models in some cases.   

 Inspired in part by DMIP, this study will compare model output of 

discharge from the distributed, physically based Penn State Integrated Hydrologic Model 

(PIHM), which has been coupled with the Noah Land Surface Model to form Flux-

PIHM, and output from the lumped, conceptual Antecedent Precipitation Index (API)-

Continuous model to USGS discharge observations for 2010 at the Spruce Creek stream 

flow gauge in the Little Juniata river basin, an 843.3 km
2
 basin in Central Pennsylvania.  

We will assess the ability of each model to represent the physical processes of the basin 

by comparing various characteristics of discharge hydrographs from 12 selected storm 

events. The magnitude of the discharge peak, the elapsed time between the start of a 

precipitation event and the peak of the responding discharge and the amount of runoff 

produced is analyzed.  Similar indices were analyzed in DMIP.  We suspect that amongst 

all atmospheric forcing fields necessary to run the models, precipitation may have the 

most prominent effect on the characteristics of resultant discharge.  The importance of 

quality precipitation forcing data is emphasized in Lou et al., (2003).  We will assess 

whether the magnitude and duration of specific precipitation events differs between 

forcing data sets and if so, whether these discrepancies can explain any of the differences 

identified in discharge model output.  

 This study employs some of the analysis techniques used in DMIP, such 

as an analysis of the peak discharges in storm events.  DMIP, however, compared 

multiple distributed models on 16 different basins ranging in area from 37km
2
 to 
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2484km
2
 using multiple years of data, while this study analyzes just one distributed 

model on a single basin.  DMIP does not include a comparison of precipitation data sets, 

which will be used in this study to further explore the scientific reasoning behind our 

results.  Additionally, DMIP uses the same forcing data for all models in the study while 

our study uses data sets that maximize performance of each model, a practice that would 

be conducted in a true forecasting setting.  This study is not wide enough in scope to 

concretely determine whether distributed models are generally more effective river 

forecasting tools.  This study will, however, assess model inconsistencies and offer 

possible explanations that can be taken into consideration for model improvement as the 

operational river forecasting field considers a transition towards the use of distributed 

models. 
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Chapter 2 

Methods 

2.1 Domain of Study 

The Little Juniata river basin (Figure 2.1) is located in central Pennsylvania just 

west and south of State College, PA.  It is a second order watershed 843.3 km
2
 in size and 

consists of 18% developed land, 17% agriculture, 63% wooded, and 2% transitional land 

(Capracasa, 2005).  The basin has a mean elevation of 408.4m and a channel slope of 

2.82 m/km.  It lies within the Juniata River watershed, which in turn is a tributary of the 

Susquehanna River watershed.  

 

 

 

 

 

 

 

 

 

 

0 20,000 
Meters 

Figure 2.1. A schematic of the Little Juniata river basin as represented by the 

Flux-PIHM model.  The red dot indicates the approximate location of the Spruce Creek 
stream flow gauge.  Flux-PIHM partitions the domain into triangles instead of grid 

points. 
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  We selected the Little Juniata river basin for this study because it serves as a 

larger sized basin than the basin on which Flux-PIHM was previously tested, the nearby 

0.08 km
2
 Shale Hills basin (Shi et al., 2013).  Due to the larger area, Little Juniata is more 

relevant for river forecasting purposes.  Within the Little Juniata river basin lays the 

Spruce Creek streamflow gauge (USGS 01558000), which serves as a forecast point for 

the NWS Middle-Atlantic River Forecast Center.  This study compares model output for 

the Spruce Creek gauge with discharge observations at the same location for the year 

2010. 

2.2 Storm Events 

We selected twelve storm events (Table 2.1) for statistical analysis, including one 

storm for each month in 2010.  For brevity storms will be referred to by the unique month 

in which they occurred.  
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 Start Date Total 

Precipitation (cm.) 

Precipitation 

Duration (hrs) 

1 17 January 2010 1.8796 15 

2 5 February 2010 3.048 30 

3 12 March 2010 6.604 64 

4 25 April 2010 0.889 9 

5 22 May 2010 2.1336 30 

6 9 June 2010 3.6322 16 

7 20 July 2010 1.905 8 

8 6 August 2010 0.19386 6 

9 30 September 2010 9.1694 24 

10 18 October 2010 0.3302 18 

11 4 November 2010 1.524 25 

12 12 December 2010 0.7112 19 

 Selection of the storm events was a partially subjective process.  We attempted to 

use storm events with a variety of precipitation totals.  We conducted a visual analysis of 

the precipitation data around the time of the storm to estimate the amount of associated 

precipitation and to attempt to ensure that the discharge profiles would not be too heavily 

influenced by precipitation events preceding our succeeding the event of choice.  Along 

with the precipitation data associated with the storm, the discharge profiles, known as 

hydrographs, were collected from the PIHM output, API-Continuous output and the 

USGS observations for comparison.  

Table 2.1. The selected storm events for analysis, including the start date of the precipitation, the 

total precipitation (cm) for the event, and the number of hours precipitation occurred.  Note: one storm 

event per month. 
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2.3 Model Background, Forcing Data and Output 

2.3.1 Penn State Integrated Hydrologic Model 

The Penn State Integrated Hydrologic Model is an open-source community model 

tied to a GIS interface which allows users to digitally download the parameters and data 

necessary to run the model for a river basin of choice.  PIHM is a multi-process model 

governed by a set of partial differential equations to represent the routing and flow of 

surface and subsurface water, and a set of ordinary differential equations to represent 

physical processes in the basin, such as evapotranspiration and canopy interception.  The 

model uses irregularly sized triangles in a grid to cover a given domain.  Readers are 

referred to Qu & Duffy, (2007) or the website dedicated to PIHM (www.pihm.psu.edu) 

for a more detailed explanation of the model.  For this study we use a version of PIHM 

which has been coupled with the Noah land surface model (LSM) (Ek et al., 2003) in 

order to take advantage of the LSMs superior evapotranspiration scheme. This version of 

PIHM is referred to as Flux-PIHM.  The design of Flux-PIHM is explained in Shi et al., 

(2013). 

It is necessary to calibrate model parameters in order to ensure the model is properly 

tuned to the specific domain for which it is being executed.  The process helps the model 

perform as accurately as possible.  For this study, PIHM alone was calibrated before 

being coupled to Noah as Flux-PIHM.  The process used to calibrate PIHM to the Little 

Juniata river basin involved first separating the “fast” parameters, which control 

processes on time scales of minutes, hours and days, from the “slow” parameters, which 

control processes on month-long to season-long time scales.  A process known as the 

Covariance Matrix Adaptation Evolutionary Strategy (Hansen & Ostermeier, 2001; 
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Hansen et al., 2006) was employed to optimize the fast and then slow parameters as one 

batch, and assigning values to, and rescaling the parameters in, each group.  Flux-PIHM 

is then run with those parameters and the root mean squared error of the modeled output 

versus observational data is analyzed.  The parameters are rescaled and the root mean 

squared error is recalculated until the user reaches a sufficient number of trials or a 

desired error criterion (Y. Shi, personal communication).  

The model calibration was performed to best match hourly model output of discharge 

with discharge observations in the Little Juniata River basin.  Specifically, hourly 

discharge observations from two rain events in September of 2004 were used for this 

optimization.  These storms were large discharge events associated with remnants of 

hurricanes (Y. Shi, personal communication). 

Flux-PIHM requires a collection of forcing datasets in order to adapt to the spatial 

and temporal variability of the basin.  Time series of precipitation, temperature, relative 

humidity, wind speed, downward shortwave radiation, downward longwave radiation, 

and surface pressure for the period and area of study were gathered from the forcing data 

used in Phase 2 of the National Land Data Assimilation System (NLDAS-2).  We 

acquired the datasets though the NASA Goddard Earth Sciences Data and Information 

Services Center (GES DISC) Mirador database at http://mirador.gsfc.nasa.gov/. Using 

forcing data similar to what we collected, NLDAS-2 executes four land-surface models – 

Noah, Mosaic, Sacramento Soil Moisture Accounting (SAC-SMA), and the Variable 

Infiltration Capacity (VIC) model – to provide output over a domain covering the entire 

continental United States at a spatial resolution of 1/8-degree.  Xia et al., (2012) and 

Mitchell et al., (2004) provide more detailed accounts of NLDAS-2 and its predecessor, 
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NLDAS-1, respectively. Information is also available at the webpage dedicated to 

NLDAS-2, http://ldas.gsfc.nasa.gov/nldas/NLDASnews.php.     

 For this study, Flux-PIHM was run at a one-hour time scale and output was 

analyzed at the same temporal resolution.  Simulations were conducted for 1 January 

2009 to 1 January 2011.  The first year was used as a model spin-up period to reduce any 

initial condition problems.  While Flux-PIHM produces a variety of energy and 

hydrologic related output, this study only utilizes model derived longitudinal flow.  The 

longitudinal flow product is equivalent to river discharge and will be referred to as such 

hereafter.   We gathered hourly model discharge in m
3
/day from 1 January 2010 at 0z to 1 

January 2011 at 0z for Flux-PIHM’s 59
th
 river segment, which corresponds to the Spruce 

Creek stream flow gauge. 

We also compared the amount of runoff observed and estimated by the models for a 

given storm event.  Before the ground is saturated, all water from precipitation percolates 

underground and contributes to the subsurface component of runoff known as base flow.  

Once the surface, and the soil just below the surface, is saturated, any additional 

precipitation contributes to surface flow, and is termed runoff.  In order to calculate 

runoff, the base flow component was removed from the discharge hydrographs.  The base 

flow value was assumed to be the discharge value at the start of the precipitation event.  

This amount was subtracted from every discharge value to produce a time series of Flux-

PIHM modeled runoff for each storm event. 
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2.3.2 Antecedent Precipitation Index-Continuous Model 

The Antecedent Precipitation Index-Continuous model, referred hereinto forth as 

API-Continuous, is a lumped, conceptual model used by the National Weather Service 

Middle Atlantic River Forecast Center to forecast stream flow and stream stage at sites 

across the mid-Atlantic region. In this model, precipitation input is used to calculate an 

Antecedent Precipitation Index, a weighted sum of the precipitation prior to the start of a 

high-flow event.  The index is calculated based on the notion that the effects of 

antecedent precipitation on discharge decays with time (Beschta, 1990).  The calculation 

of this index considers the magnitude and duration of observed or estimated precipitation 

before a potential high-flow event, as well as the geological and topographical 

characteristics of the basin.  The model uses four quadrants, or equations, to produce 

output.  In order, the quadrants account for the time of year, account for the surface 

moisture conditions, compute the surface runoff based on surface and soil-moisture 

conditions, and compute the fraction of precipitation that will be directed to groundwater 

storage.  A soil moisture index is determined, not with soil moisture forcing data, but by 

defining how much precipitation is needed to induce surface runoff in the basin, which 

only occurs when the soil is completely saturated.   The model can also account for the 

effects of frozen ground.   The model is calibrated to limit the error between the model 

estimated discharge and observed discharge on a six hour timescale.  The calibration 

process uses multiple years of data compiled together in order to accurately represent 

normal seasonal conditions.  In an operational setting, API-continuous may be hand tuned 

in real time to match observations, however no hand tuning was performed to the forcing 

or output used in this study (C. Moser, personal communication).  Readers are referred to 
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Continuous API Model, (2002) and Sittner et al., (1969) for more detail about the API-

Continuous model.  It is not possible to execute API-Continuous outside of the River 

Forecast Center, so the model was executed by hydrologists at the Middle Atlantic River 

Forecast Center, and model output and forcing data was provided to the investigators. 

Forcing data for the API-Continuous model includes potential evaporation, mean 

areal precipitation and mean areal temperature.  All forcing data for the model was 

developed with local observations.      

API-Continuous was run on a six-hour time scale from 1 September 2003 to 30 April 

2012, although only output from 1 January 2010 to 1 January 2011 was used for analysis 

in this study.  An array of variables related to discharge and runoff are output by API-

Continuous but this study only uses total flow (base flow and surface flow) in m
3
/s, 

which is equivalent to discharge.  Values were converted to m
3
/day to match the units of 

the Flux-PIHM discharge output.  Following the practice implemented for Flux-PIHM, 

runoff-only hydrographs were calculated for each storm by subtracting the base flow 

value, assumed to be the discharge value at the start of a precipitation event, from each 

discharge value in a given storm hydrograph.   

2.4 Observational data 

The United States Geological Survey (USGS) maintains a network of water resource 

data, including stream flow gauge data for the Spruce Creek outlet.  15-minute stream 

discharge data was gathered from the USGS Water Data site 

(http://waterdata.usgs.gov/usa/nwis/uv?site_no=01558000) for 1 January 2010 to 1 

January 2011.   We converted the observation discharge units of ft
3
/sec to m

3
/day to 

match the units of the Flux-PIHM output.  Finally, the timestamps were adjusted from 
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EST and EDST to UTC.  Observed runoff-only hydrographs were produced by removing 

the base flow from each discharge value associated with a given storm event. 

2.5 Basin Flow Analysis Techniques 

We utilized a variety of variables and measures to compare the hydrographs of Flux-

PIHM and API-Continuous to the respective observations in an attempt to analyze the 

accuracy of the models as river forecasting tools.  Some of the statistical tests and 

measures designed were inspired by those used in the first phase of the DMIP study and 

outlined in Reed et al., (2004).   

In addition to extracting modeled and observed discharge hydrographs for each storm, 

we developed residual hydrographs, which display the error of each Flux-PIHM and API-

Continuous hydrograph from the corresponding observation hydrograph for a given 

storm.  Base flow was removed from each hydrograph time series, and the residual was 

calculated by subtracting the model output values from the observations.  

The peak discharge of a storm event correlates to the highest water level during the 

event, and therefore is a noteworthy parameter for river forecasting.  An under-forecasted 

peak discharge magnitude may result in a missed forecast for a flood event.  Similarly, 

the elapsed time between the start of a precipitation event and the peak of the discharge is 

a valuable measure for river forecasting.  It is also a good indicator as to how well the 

model is representing the physical properties of the basin.  We calculated and recorded 

the magnitude of the peak discharge and the time between the start of precipitation and 

the peak discharge for each storm event for the Flux-PIHM, API-Continuous and 

observational hydrographs.  These calculations were made using surface flow only.  With 
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base flow removed, it was possible to conduct a concrete assessment of the ability of each 

model to capture the physical processes associated with peak flow and time to peak.  

This study employs the Nash Sutcliffe model efficiency coefficient to further 

measure the accuracy of Flux-PIHM and API-Continuous in relation to the observations.  

The Nash Sutcliffe coefficient is shown in equation 1 

                     

where Qo is the observed discharge and Qm is the modeled discharge (Nash & 

Sutcliffe, 1970).  Values can range from -∞ to 1, with 1 corresponding to an exact fit and 

negative values indicating that the mean of the observed discharge is a better predictor 

than the model.   For further commentary on the Nash Sutcliffe coefficient and a 

discussion of its biases, the reader is referred to Krause et al., (2005).  Nash-Sutcliffe 

coefficients were calculated between Flux-PIHM and observations and API-Continuous 

and observations for discharge for the entirety of 2010. 

 As described previously, for each modeled and observed hydrograph, base flow 

was removed to produce a profile of runoff for each storm event.  The area under the 

curve of each runoff-only hydrograph was calculated using the trapezoidal rule to 

estimate the integral, which is equivalent to the volume of total runoff.  The volume was 

divided by the total area of the basin to calculate depths of total runoff (m).  Using these 

values, we assessed the ability of each model to accurately simulate the total amount of 

runoff for a given storm event. The ability for Flux-PIHM and API-Continuous to 

(1) 
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accurately predict total runoff is an indicator as to how well the model represents the soil 

moisture of the basin and the physical properties related to it.     

2.6 Precipitation Analysis 

We assessed whether differences in precipitation forcing datasets for the same 

region exist and if so, whether these differences translate into differences in discharge 

output between models.  For this comparison, we use the Noah LSM produced 

precipitation dataset from NLDAS-2, the mean areal precipitation dataset which was used 

as forcing for API-Continuous and precipitation observations measured by a distrometer 

located in the nearby Shale Hills Critical Zone Observatory 

(http://www.czo.psu.edu/data_time_series.html).  This selection of datasets showcases 

the variety of precipitation forcing that can be used for a model in an operational 

forecasting setting.  The first dataset is extracted from a national data assimilation 

system, the second dataset uses a spatial sampling of local rain gauge measurements 

combined with radar reflectivity precipitation estimates and the third dataset uses direct 

observations from a distrometer with high temporal resolution, yet is located slightly 

outside of the Little Juniata River basin and does not capture the spatial heterogeneity of 

precipitation.  The precipitation observations associated with each of our twelve storm 

events were extracted from the datasets. The time series were compared with respect to 

the duration of the precipitation event, the rate at which precipitation fell per hour, and 

the total amount of precipitation recorded for the given event. 
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Chapter 3 

 

Results 

We conducted various analyses to compare the river forecasting performance of 

the Flux-PIHM and API-Continuous models to observations for the year 2010 at the 

Spruce Creek gauge in the Little Juniata River Basin.  Figure 3.1 displays the 

hydrographs for the entirety of 2010 for both models and observations. 

 

 Figure 3.1. Flux-PIHM (red), API-Continuous (green) and USGS Observation (blue) 

hydrographs for the entirety of 2010.  Discharge in units of m
3
/day. 
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During the winter months and beginning of spring, the base flow as modeled by 

Flux-PIHM is higher than API-Continuous output and observations.  Flux-PIHM also 

tends to overestimate the peaks in discharge during this time period.  In early March, 

Flux-PIHM simulates discharge peaks that are not observed or modeled by API-

Continuous at all.  Models and observations are in best agreement in May.  For the 

entirety of 2010, Flux-PIHM compared to observations has a Nash Sutcliffe coefficient of 

.53, while the value for API-Continuous compared to observations is .87, indicating that 

API-Continuous is, on average, a better simulator of discharge.  However, model 

performance on a case-by-case basis is a more relevant concern than annually averaged 

performance.  Figure 3.2 displays the hydrographs, plots of discharge versus time, with 

base flow removed for each of the 12 storm events.  Based on our methodology for 

removing base flow, a value of negative discharge indicates that the discharge magnitude 

fell below the storm’s initial value. 
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Figure 3.2. Flux-PIHM (red), API-Continuous (green) and USGS observation (blue) 

discharge hydrographs minus base flow for the each of the 12 storm events.  One storm event per 

month in 2010. A negative discharge value indicates the discharge magnitude is less than the 
initial base flow value.  Note discharge in m

3
/day and scale is not uniform. 

 

Most of these cases follow a pattern typical of storm event hydrographs.  

Responding to the precipitation, discharge rises (rising limb of the hydrograph) to a peak 

and returns to near base flow values along the section of the hydrograph termed the 

recession curve.  Secondary peaks within the hydrographs displayed are a result of 

succeeding, smaller precipitation events.  The diurnal cycle of melting snow can be 

observed in the tail end of the December hydrograph.  Although API-Continuous output 

has a coarser temporal resolution than Flux-PIHM, that disparity alone does not lead to a 

noticeable difference between the Flux-PIHM and API-Continuous profiles.  Figure 3.3 
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consists of residual hydrographs for each storm, produced by subtracting the model 

output from respective observations to display model error.   
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As evident in the residual hydrographs, the error between API-Continuous and 

observations generally increases towards the end of the hydrograph compared to the start 

of the event.  Such a trend is apparent in the January, March and December residual 

hydrographs.    

Figure 3.4a,b contains two scatter plots comparing the modeled and observed 

peak discharge magnitude for each storm event without base flow. Figure 3.4a contains 

all storm events and 3.4b is a zoomed in version of the same data but with the largest two 

storms removed for easier visualization.  The events have been identified by the 

meteorological season in which they occurred.   

 

 

Figure 3.3. Flux-PIHM (red), API-Continuous (green) and USGS observation (blue) residual 
hydrographs minus base flow for the each of the 12 storm events.  One storm event per month in 

2010.  A negative (positive) value indicates model discharge value was less than (greater than) the 

respective observation.  Note discharge in m
3
/day and scale is not uniform. 
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 A marker on the diagonal 1:1 ratio line indicates that the peak discharge as 

modeled by Flux-PIHM or API-Continuous is identical to the observed peak discharge 

for a given event.  Our results indicate that Flux-PIHM overestimates the peak discharge 

amount in most of the storm events.  The same conclusion is apparent in the positive 

Flux-PIHM errors seen in many of the Figure 3.3 residual hydrographs.   Although Flux-

PIHM was optimized using two large discharge events, API-Continuous is the more 

accurate model for the simulation of peak discharge in the larger spring and fall events.  

In agreement with the conclusions drawn from Figure 3.2, API-Continuous consistently 

simulated peak discharge magnitude more accurately than Flux-PIHM in the winter 

(b) (a) 

Figure 3.4. Comparison of the magnitude of peak discharge per a) each storm event and b) all but the two 
largest storm events  as estimated by Flux-PIHM, API-Continuous versus observations.  Events are grouped based on 

meteorological season in which it occurred.  Diagonal line represents the 1:1 ratio.  Base flow was removed from 

discharge values, which are in m
3
/day. 
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months.  Furthermore, Flux-PIHM simulates peak discharge more accurately than API-

Continuous in the summer cases.   

Figure 3.5 shows a comparison of the elapsed time between start of the 

precipitation event and the occurrence of the peak in discharge.  The model output is 

again identified by model and the meteorological season during which the storm 

occurred.   

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Comparison of the time (hours) between the start of precipitation and the 

peak of the discharge per storm event as estimated by Flux-PIHM, API-Continuous and as 

observed.  Events are grouped based on meteorological season in which it occurred. 

 

Both API-Continuous and Flux-PIHM underestimate the time between the start of 

precipitation and the peak of the discharge for most of the storm events.  The models are 

simulating a peak in discharge faster than what was actually observed.  The models are in 
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closest agreement during the fall, and no trend indicates a degradation or improvement in 

model performance for longer duration events.    

 We calculated the total runoff for each storm event as observed and modeled by 

Flux-PIHM and API-Continuous.  Figure 3.6 shows a comparison of these calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flux-PIHM tends to underestimate total runoff in the earlier months of the year, 

especially in the spring, and tends to overestimate total runoff in the summer and fall months.  

Results for the March, April and September storms suggest that API-Continuous simulates more 

total runoff than Flux-PIHM for large discharge events.  An analysis of the corresponding 

hydrographs for these storms indicates that API-Continuous simulated a higher discharge peak 

than Flux-PIHM for the March storm, leading to a higher total runoff, yet the API-Continuous 

peak discharge was less than the Flux-PIHM value for the April and September storm.  Instead, 

Figure 3.6. Total runoff (m) for each storm event as estimated by Flux-
PIHM (red), API-Continuous (green) and as observed (blue). 
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the higher total API-Continuous simulated runoff values for these storms was a result of a wider 

peak of increased discharge, indicating API-Continuous simulated a faster rise and fall in 

discharge magnitude.  In multiple events, including the April and September storm, Flux-PIHM 

simulates a shorter duration of increased flow than API-Continuous does.  

 We compared multiple precipitation datasets to determine whether differences in 

precipitation magnitude and duration existed, and whether these differences could cause model 

inconsistencies if these datasets were used interchangeably for model forcing.  We compared the 

total precipitation and duration of precipitation for each storm event as observed by the NLDAS-2 

forcing used for Flux-PIHM, the mean areal precipitation used for API-Continuous and 

observations from a distrometer located at the Shale Hills Observatory.  Table 3.1 displays the 

mean, standard deviation and standard error of total precipitation and duration for the 12 storm 

events. 

. 

 

 

 A significant difference in total precipitation does exist between the three datasets.  Total 

precipitation is considerably less in the NLDAS-2 dataset then the API-Continuous forcing and 

 NLDAS-2 

Event Total 

Precip. (m) 

API-

Continuous 

Forcing 
Event Total 

Precip. (m) 

Shale Hills 

Distrometer 

Event Total 
Precip. (m) 

 NLDAS-2 

Event 

Precip. 
Duration 

(hrs) 

API-Continuos 

Event Precip. 

Duration (hrs) 

Shale Hills 

Distrometer 

Event Precip. 
Duration (hrs) 

Mean 6.21(10)
-4

 2.65(10)
-2

 2.33(10)
-2

  22.8 22.5 20.3 

Standard 

Dev. 6.17(10)
-4

 2.72(10)
-2

 2.34(10)
-2

 

 

16.0 18.3 19.3 

Standard 

Error 1.78(10)
-4

 7.84(10)
-3

 7.41(10)
-3

 
 

4.63 5.28 6.11 

Table 3.1. The mean, standard deviation and standard error of the total precipitation and duration of precipitation 
of the 12 storm events as observed by the NLDAS-2 forcing data, the mean areal precipitation data used to force API-

Continuous and a distrometer located in the Shale Hills Observatory. 
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the distrometer.  This disagreement has been highlighted in previous studies.  Luo, et al., (2003) 

explains that NLDAS-2 uses daily precipitation as a base and interpolates to hourly observations.  

The dataset is further smoothed because it incorporates observations from many point 

measurements, the majority of which may not have observed precipitation.  No significant 

difference in precipitation duration exists between the three datasets.   
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Chapter 4 

 

Discussion 

Due to logistical and time constraints, the investigators in this study did not have 

full access to both models to definitively confirm or reject theories that may serve as 

causation to the results described above, but here we offer insight into possible 

explanations to the identified trends that could be tested in additional studies. 

 We determined that Flux-PIHM overestimates base flow in the winter and early 

spring events.  Flux-PIHM has insufficient snow physics built into the model thereby 

allowing too much base flow to be simulated during these months.  In the early spring 

months, Flux-PIHM simulations may include more melting than is actually occurring.  

Improving snow physics, or calibrating the model with temperature data, which directly 

affects surface melting processes, may help to reduce the base flow error during these 

months.  Throughout the year, including winter and early spring, Flux-PIHM 

overestimated the peak discharge magnitude of most of the storm events.  Since PIHM 

was calibrated with large discharge events, Flux-PIHM may have a wet bias.  This bias 

may lead to simulated peak discharge values that are greater than observations.  

Additionally, Flux-PIHM simulations may include an underestimation of 

evapotranspiration which would subsequently allow for more water from precipitation to 

contribute to discharge.  A comparison of Flux-PIHM estimates of evapotranspiration 

with other datasets may offer more clarity.   

 Based on the storm events studied, Flux-PIHM simulates peak discharge more 

accurately than API-Continuous in the summer months.  As a distributed model, Flux-
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PIHM accounts for the spatial variability across the basin, while API-Continuous does 

not have this capability.  In the summer time, storms are more likely to be smaller scale, 

convective events, instead of widespread, synoptic systems.  The distribution of 

precipitation across the basin may not be uniform for a summertime convective storm, 

which will inevitably affect the duration and magnitude of the responding discharge 

increase.  A well calibrated distributed model may offer an advantage in mesoscale 

precipitation scenarios over a lumped model. 

 In multiple events analyzed in this study, the error in discharge modeled by API-

Continuous compared to observations increased towards the end of the hydrograph as 

discharge returned to base flow conditions.  API-Continuous may not be properly 

accounting for soil moisture conditions.  For example, if API-Continuous simulates 

conditions that are too moist, more water from precipitation will be available to 

contribute to runoff, further increasing the discharge above base flow values.  API-

Continuous may struggle to accurately represent soil moisture after high flow conditions.  

In an operational setting, however, a forecaster can hand tune the model, adjusting the 

model so the simulated hydrograph more closely matches observations. 

Figure 3.5 illustrated that both models generally simulate a shorter elapsed time 

between the start of a precipitation event and the peak of the discharge than is actually 

observed.  One factor for this trend may be that the models are incorrectly distributing the 

precipitation between the base flow and surface flow components of the discharge.  Base 

flow propagates through the basin at a slower time scale than surface flow.  If the 

proportion of surface flow to base flow is higher than observations, the model output may 

simulate the discharge peak too quickly.   
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The assessment of total runoff of each storm event indicates that Flux-PIHM 

underestimates total runoff in the early months of the year, especially in early spring, and 

overestimates total runoff in the summer and early fall.  This systematic bias could be 

addressed with improved tuning of the model.  API-Continuous simulates more total 

runoff than Flux-PIHM for events of high runoff magnitude, including the March, April 

and September storms.  The hydrographs for these storms found in Figure 3.2 illustrates 

that a high API-Continuous peak discharge value caused the higher total runoff value in 

the March storm.  However, the API-Continuous peak discharge values were smaller than 

the corresponding Flux-PIHM peak discharge values for the April and September storms.  

Instead, the ridge in the API-Continuous hydrographs was wider than the corresponding 

Flux-PIHM ridges for those storms, leading to more “area under the curve”. Flux-PIHM 

progresses through the process of increasing and decreasing discharge slower than API-

Continuous does for these precipitation events.  This notion of a shorter, yet wider API-

Continuous discharge curve compared to the Flux-PIHM output also occurs in the 

January storm.  Accurate simulation of the peak discharge value may alone not lead to an 

accurate simulation of total runoff.  A model may also need to be tuned to account for the 

duration of non-base flow, increased discharge values for a storm event. 

Many of the trends and possible causes of the trends can be addressed with 

improved, or more focused, calibration of the models.  The river forecasting performance 

of both Flux-PIHM and API-Continuous relies on various parameters that can be tuned to 

maximize the accuracy of one or more of the measures discussed.  PIHM was only 

calibrated with discharge for this study, but groundwater, heat fluxes, temperature and 

other variables could be factored into the calibration process to address some of the errors 
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highlighted in this study.  Although the NLDAS-2 precipitation forcing was significantly 

less in magnitude than the forcing data used for API-Continuous, Flux-PIHM discharge 

output was not proportionally less than API-Continuous output, promoting the notion that 

calibration of the model plays an important role in model accuracy from a river 

forecasting perspective. 
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Chapter 5 

 

Conclusions 

We assessed the river forecasting performance of the distributed, physically based 

Flux-PIHM model and the lumped, conceptual API-Continuous model compared to 

USGS stream flow observations for 2010 at the Spruce Creek stream flow gauge in the 

Little Juniata River Basin.  We specifically investigated 12 storm events during 2010.  

We analyzed the hydrographs for the entirety of 2010 as modeled and observed, assessing 

the accuracy of the Flux-PIHM and API-Continuous simulations. On a storm-by-storm 

basis we compared model output and observations in relation to the peak discharge 

magnitude of the event, the elapsed time between the start of precipitation and the peak 

discharge and the total runoff.  The results highlighted the benefits of distributed or 

lumped models in a river forecasting setting.  We determined possible causes for the 

results observed, many of which point to calibration and parameterization improvements 

that could be made within the models. For example, Flux-PIHM overestimates base flow 

and peak discharge in the winter and early spring months due to poor snow physics 

representation in the model.  API-Continuous tends to simulate peak discharge less 

accurately in the summer months than Flux-PIHM because it cannot account for the 

spatial variability of precipitation associated with mesoscale, convective events that 

commonly occur during time of year. 

We hope to further this study by including more storm events in the analysis.  

Robust conclusions are difficult to draw with only 12 subjectively chosen events, or only 
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3 events per season.  Data availability was limited to 2010 but with more years, more 

events could feasibly be chosen.  We would also like to further explore the effects of 

using different forcing data on the models.  We compared the two precipitation forcing 

datasets and a local point observation dataset, but since we could not force API-

Continuous with any other precipitation datasets besides the mean areal precipitation that 

was used for the model, we could not necessarily quantify the effects that the difference 

in the precipitation datasets could have on model output.  Comparing Flux-PIHM to the 

conceptual Sacramento-Soil Moisture Accounting Model (SAC-SMA) (Burnash et al., 

1973; Burnash et al., 1995) may also allow for more flexibility in our analysis.  SAC-

SMA is heavily used at National Weather Service River Forecasting Centers nationwide 

and unlike API-Continuous the model can be executed outside of a River Forecast Center 

in a research setting.   Completing our analyses at multiple basins may also yield results 

worthy of analysis. 

We hope this work spurs further study into the performance of distributed and 

conceptual models as river forecasting tools.   Previous work has assessed the accuracy of 

each type of model with respect to relevant river forecasting characteristics such as peak 

discharge magnitude or time to peak discharge, but we feel that few of these studies have 

been able to sufficiently pinpoint the causes of the noted trends.  As the field of 

hydrologic modeling progresses the proper question is not which type of model is more 

accurate, but rather what factors lead to accuracy in a certain model, and under which 

hydrologic conditions may a certain model be preferable.     
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