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Abstract:

There is now a wide literature on the use of tracer age and transit time distributions to diagnose transport in environmental
systems. Theories have been proposed using idealized tracer age modelling for ocean ventilation, atmospheric circulation, soil,
stream and groundwater flow. Most approaches assume a steady flow regime and stationarity in the concentration (tracer)
distribution function for age, although recent work shows that this is not a necessary assumption. In this paper, dynamic model
for flow, concentration, and age in volume-averaged and a spatially distributed watershed system are derived in terms of the
moments of the underlying distribution function for tracer age, time, and position. Several theoretical and practical issues are
presented: (1) The low-order moments of the age distribution function are sufficient to construct a dynamical system for the
mean age and concentration under steady or transient flow conditions. (2) Solutions to the coupled system of equations for
flow, concentration and age show that ‘age’ of solutes stored within the watershed or leaving the watershed is a dynamic
process which depends on flow variations as well as the solute or tracer dynamics. (3) Intermittency of wetting and drying
cycles leads to an apparent increase in the tracer age in proportional to the duration of the ‘dry’ phase. (4) The question
of how mobile/immobile flow may affect the age of solutes is examined by including a low permeable, passive store that
relaxes the well-mixed assumption. (5). A spatially distributed advective and dispersive transport solution for age evolution
over a simple 1-D hillslope is developed to demonstrate the age theory for a distributed source of water and tracer, and the
solution is shown to have very similar input–output behaviour when compared to the volume-average model for comparable
parameters. Copyright  2010 John Wiley & Sons, Ltd.
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INTRODUCTION

The concept of ‘age’ in terrestrial watersheds and river
basins has long been a useful quantity for the analysis of
process timescales (Phillip, 1995) and resource assess-
ment (Allison and Holmes, 1973), and recent reviews of
the modelling and experimental strategies have greatly
organized our approach to the problem of age of waters
(IHP-V, 2001; Kazemi et al., 2006; Brooks et al., 2010).
Many authors have noted that the interpretation of ‘age’
of waters is complicated by the fact that age depends
on the fluid path (Botter et al., 2008; Darracq et al.,
2010), physical and chemical interactions along the path
(Destouni and Graham, 1995; Fiori and Russo, 2008),
and the forcing or watershed inputs (Maloszewski and
Zuber, 1982).

In this paper equations for the age of solutes in
subsurface flow in watersheds governed by transient flow
dynamics are investigated. The theory is based on the
early work of Nauman (1969), Eriksson (1971), Bolin
and Rodhe (1973), Goode (1996) for groundwater, and
the recent work for transient systems of Delhez et al.
(1999) and Gourgue et al. (2006). This paper shows
that the coupled dynamical system for transient flow,
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concentration and age can be derived without assuming
the particular form of the age distribution function.
Several solutions are presented that illustrate the theory
and shed some light on the questions of ‘old water’,
such as the role of mobile–immobile tracer flow, the
implications of constant, intermittent and random flow
and tracer inputs, and the role of advection–dispersion
on water ‘age’ at the hillslope scale.

THE CONCENTRATION–AGE SYSTEM

Solute ‘age’ is an extensive property which is defined
here as the elapsed time since the solute or tracer of
interest entered the system, and that the tracer or solute in
question has the usual properties of a neutrally buoyant
fluid particle (Bolin and Rodhe, 1973). For the water-
shed, the age might be defined as the time since the
tracer entered the soil surface as precipitation. Or in the
case of groundwater, the time since the solute entered the
aquifer. In general, ‘age’ is a function of space and time
A�x, t� and depends on the particular transport processes,
physical and chemical interactions, the boundaries and
initial conditions of the watershed. In 1972 Rotenberg
proposed a theory for age-dependent biological species
that is relevant here. Following Rotenberg’s development,
we define a joint age–time concentration distribution
function c(x, t, �), position vector x, which describes the
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number of dissolved particles that exist within a speci-
fied sub-volume in the time interval ft, t C dtg and the
age interval f�, � C d�g. In general, the particular form
of c(x, t, �) would be required to develop information on
the joint age–time characteristics of the system. How-
ever, as has been shown by Nauman (1969), Rotenberg
(1972), and more recently by Delhez et al. (1999), it is
straightforward to examine moments of c(x, t, �) which
generally are more accessible for analysis. We assume
that the joint age–time distribution is from a population
of particles in any sub-volume that is sufficiently large
that a continuous distribution exists, and that the time
and age correlation of particles in the volume is small
relative to other timescales of the system (e.g. statistical
independence). From the usual rules of probability, the
nth moment of c(x, t, �) with respect to � is written as

�n�x, t� D
∫ 1

0
�nc�x, �, t�d� �1�

The tracer concentration C�x, t� for one dimensional
flow in x is given by the zeroth moment:

C�x, t� D
∫ 1

0
c�x, �, t�d� �2�

Now following Delhez et al. (1999) the mean age
A�x, t� of our tracer is conveniently defined as the ratio
of the first and zeroth moments:

A�x, t� D

∫ 1

0
�c�x, �, t�d�

∫ 1

0
c�x, �, t�dt

D ˛�x, ��

C�x, ��
�3�

where ˛�x, t�, the first moment of Equation (1), is
referred to as the age–concentration function and the
denominator is the tracer concentration C�x, t� or zeroth
moment. From Equation (3) we see that the mean age
A�x, t� is an explicit function of position and time. The
purpose of this representation, as we shall see, is to put
the mean age in terms of moments of the tracer distribu-
tion function c�x, t, �� which is developed next for general
transport.

Assuming the tracer distribution function is subject to
the processes of solute transport and reaction, Rotenberg
(1972) and later Delhez et al. (1999) show that c�x, t, ��
satisfies a conservation equation in terms of time, age and
position:

∂c

∂t
C ∂c

∂�
D c � L�c� �4�

where the left-hand represents the total derivative for
particles that are allowed to age, L�c� is a general operator
for transport (advection, diffusion and dispersion or bulk
transport) and the term c represents sources and sinks.
Figure 1 shows the particle control volume within our
conceptual watershed. The importance of Equation (4)
is that even if the distribution function c�x, t, �� is
not known explicitly, it provides a means of forming
transport equations for the individual moments of the
process. The necessary properties of Equation (4) are:

V

1

V
DM (t,τ)

V

∂M
∂t

= [
1

]�
∂M
∂t

Figure 1. A control volume within the watershed showing the hypotheti-
cal distribution of particles of mass M that are allowed to evolve in time
and age. dM(t,�) is the total derivative for tracer mass with respect to

age and time

c�x, t, �� is a continuous density for the time and age
distribution of particles in any sub-volume of the system;
that the time correlation among the particles in the sub-
volume is small relative to other timescales of the system
and that c�x, t, �� can be approximately described by its
first few moments. To calculate the moments for age, we
multiply Equation (4) by �n and integrate over �:

∫ 1

0
�n ∂c

∂t
d� C

∫ 1

0
�n ∂c

∂�
d� D

∫ 1

0
�n[c � L�c�]d�

�5�
which yields, after some manipulation, a general equation
for the tracer moments:

∂�n

∂t
D n�n�1 C �n � L��n� �6�

The term n�n�1 is found from integration by parts for
the second term on the left-hand side of Equation (6),
and making the assumption that the moments of the
distribution function for concentration and age have the
property (Delhez et al., 1999)

lim�!0�nc�x, �, t� D lim�!1�nc�x, �, t� D 0 �7�

Evaluating Equation (6) for moments n D f0, 1g yields

n D 0
∂C

∂t
D c � LC �8�

n D 1
∂˛

∂t
D C C ˛1 � L�˛� �9�

A�x, t� D

∫ 1

0
�c�x, t, ��d�

∫ 1

0
c�x, t, ��d�

D ˛�x, t�

C�x, t�
�10�

Note that Equation (8) is the transport equation for the
tracer concentration C�x, t� and Equation (9) represents
transport of age concentration ˛�x, t� which are related by
A�x, t� D ˛�x, t�/C�x, t�. Together, Equations (8)–(10)
form a coupled system of partial differential equations
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for concentration and age. Boundary and initial condi-
tions will depend on the particular transport assumed in
the model. One implication of the system above is that
the mean age can be directly determined using the same
transport and reaction operator L�˛� as the concentra-
tion equation (8). In the following sections, we examine
a range of solutions for flow and tracer transport applica-
ble to small watershed settings similar to models devel-
oped by Duffy and Cusumano (1998) and Duffy and Lee
(1992).

CONCENTRATION–AGE–DISCHARGE FOR A
VOLUME-AVERAGED SYSTEM

An elementary model of an upland watershed assumes
that the fluid reservoir (e.g. the watershed) has fluid
storage volume V�t�, input volumetric flow rate Qi�t� and
output flux Q�t�. The flow through the reservoir satisfies
a balance equation:

dV

dt
D Qi � Q �11�

where the outflow is some function of the storage Q D
Q�V� defined later. The tracer concentration for the input
Ci�t� and the output concentration C�t� have the material
balance

d�VC�

dt
D QiCi � QC C Vc �12�

where c is an internal source or sink of the tracer includ-
ing any physical or chemical reactions. Equations (11)
and (12) can be simplified by expanding Equation (12)
and combining with Equation (11) to yield

dV

dt
D Qi � Q

dC

dt
D Qi

V
�Ci � C� C c �13�

If we assume that our tracer has the concentration
distribution function c�t, �� for time and age, then follow-
ing the previous development we can immediately write
down our dynamical system to include transient flow and
tracer age:

dV

dt
D Qi � Q

dC

dt
D Qi

V
�Ci � C� C c

d˛

dt
D C � Qi

V
˛ C ˛

A�t� D ˛�t�/C�t� �14�

where it is assumed that ˛i�t� D Ai�t� D 0, or the tracer
input is specified to be of zero age as it enters the
system. The zero-age input is of course an arbitrary
assumption for the purpose of setting a base condi-
tion. The initial conditions for age concentration and
age, ˛�0� D A�0� D 0, can also be set to zero but again

this is arbitrary. The flow–concentration–age dynami-
cal system (14) is a stable, nonlinear system with the
exception of the singularity at V�t� ! 0. This nonphys-
ical situation is avoided by adding a small constant to

V�t� which assures that Lim
V ! 0

Q�t�
V�t� D finite. The sys-

tem (14) represents a fully coupled model of the tracer
mixing process with the addition of the equation for
the scalar ˛�t�, the age concentration, and the auxiliary
equation for age A�t�. Solutions to the system (14) fol-
low.

CLOSED-FORM SOLUTION FOR STEADY FLOW

The system (14) admits a closed-form solution for steady
flow conditions (Qi D Q), constant input (Co) and initial
conditions (Ci):

C�t� D Cie
�kt C Co�1 � e�kt�

˛�t� D k�1Co�1 � e�kt� C tCie
�kt � tCoe�kt

A�t� D ˛�t�

C�t�
D k�1Co�1 � e�kt� C t�Ci � Co�e�kt

Cie
�kt C Co�1 � e�kt�

�15�

The steady-state solution A�t ! 1� D AŁ shows that
the age depends on Co:

Co 6D 0, AŁ�1� D k�1 D V/Q

Co D 0, A�1� D t �16�

As expected, for large time, the age of the solute tends
to a constant value defined by the steady-state age or
steady-state residence time (V/Q) of the system. While
for Co D 0, the age of the solute grows in proportional
to time, a simple clock. The implications of these two
solutions will be discussed further in the next section.
AŁ will also serve as a comparison for other solutions
developed in the paper.

NUMERICAL SOLUTIONS FOR TRANSIENT FLOW
AND TRACER INPUTS

Next, we examine numerical solutions for the system (14)
for unsteady flow with step, pulse and random inputs for
the tracer and flow with particular attention paid to the
tracer mean age A�t�. In Figure 2, the solution is given for
a unit step input Qi D Ci D 1 �t > 0�, with c,˛ D 0 and
initial conditions Q�0� D C�0� D A�0� D 0. The figure
shows that age A�t� for constant inputs evolves to the
expected result, the mean residence time or the steady-
state age. As the age of the tracer tends to a constant
value, the ‘ageing process’ stops as the flow and the
tracer approach steady state. For this case and subsequent
cases, the volume–discharge relation is assumed to have
the form:

Q D a�V � V0�b �17�

with the parameters arbitrarily assigned to be V0 D 3,
a D 5 and b D 1, which were found to be convenient
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Figure 2. Numerical solution to the system (14) for unit step inputs Qi
and Ci and zero-state initial conditions. Note that AŁ�1� D V�1�/Qi is
the steady-state age or residence time. AŁ�1� with constant input is used

as a reference for later results
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Figure 3. The evolution of solute age A�t� for a finite duration pulse input
for Qi and Ci. Note that during the drying phase A�t� ¾ t

for illustrating the results. V0 can be thought of as the
residual storage volume in the system under static or no-
flow conditions.

Figure 3 shows a solution to Equation (14) for discrete
pulse inputs of flow and solute, and represents the case
when the ageing process of the tracer is intermittent due
to an abrupt change in the hydrological forcing. The
inputs are defined as

Ci D Qi D 1, �0 < t � 4�

D 0, otherwise �18�

The initial conditions are the same as for the continu-
ous unit step input. During the transient period, the flow,
tracer and age all tend to an equilibrium value governed
by the forcing as before. As the flow relaxes to no flow,
the concentration remains constant, and the age increases
as linear function of time.

The important point here is that, as the flow stops
the tracer age evolves in time, a simple clock, or
A�t� ¾ t. The implications for watershed systems that
have extended periods without hydrological inputs (e.g.
arid regions or extended drought conditions) is that
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Figure 4. The evolution of solute age A�t� for an intermittent pulse input
of Qi and Ci. Note that the intermittency increases the age of the tracer
over the steady state for constant inputs AŁ�1� (Figure 2). Also note
that the concentration C�t� is almost unaffected by the intermittent inputs
as compared to the age in this example, suggesting the importance of

transient flow on tracer ages

no-flow conditions will increase the tracer age in pro-
portion to the duration of the dry period, until wetter
conditions return and the ‘clock’ slows as shown in
Figure 1.

Figure 4 shows the ‘clock’ effect for periodic pulse
inputs of wet–dry or on–off cycles for the flow and
the tracer. The first observation is that even though the
tracer is subject to intermittent pulses just like the flow,
the longer time constant for the solute produces very
little fluctuation in C�t�. So, age fluctuations are almost
entirely due to the intermittency in the flow. The second
point is the age of the system A�t� is on-average greater
than the steady-state age AŁ�t�. This simulation suggests
that the age of tracers in upland ephemeral channels or
arid zone ephemeral streams will increase in proportion
to the duration of the seasonal drought or the length of
the dry period.

Next, we examine the role of stationary random inputs
Qi�t� and Ci�t� to illustrate the effect of continuous
variation in forcing conditions on flow, concentration and
age dynamics (Figure 5). In this case A�t� is sensitive to
variability in both the flow and the tracer concentration.
A�t� tends to increase during dry periods and to slow
down during wet cycles but with a phase lag that
depends on both the flow and the tracer. It was found
that even when the input concentration was constant,
the output age can have fairly large variations due to
the flow dynamics alone. Once the initial conditions
wear off, fluctuations in tracer and flow vary about a
constant value as does the age. In general, the amplitudes
of A�t� are large in comparison to the concentration.
Although the results discussed above will depend on
the timescale for mixing in the system, they suggest
the importance of transient flow conditions in estimating
the age of waters in the field. Note that all simulations
use the same mean parameters to allow the above
comparisons.

Copyright  2010 John Wiley & Sons, Ltd. Hydrol. Process. 24, 1711–1718 (2010)
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Figure 5. Age evolution of C�t� and Q�t� due to stationary random
inputs Qi�t� and Ci�t� and initial condition Q(0)DC(0)D0. The inputs
are generated from a uniform distribution with range f0, 2g. It was found
that even when the input concentration is relatively constant, the age can

exhibit significant time fluctuations due to the flow dynamics

Figure 6. Conceptual model for mobile–immobile flow and tracer trans-
port

CONCENTRATION–DISCHARGE–AGE
DYNAMICS FOR MOBILE–IMMOBILE FLOW

SYSTEMS

In a recent paper by Brooks et al. (2010) the authors
present experimental stable isotope data that bring into
question the assumption of complete mixing (or vol-
ume averaging) as developed in the previous section. The
authors show that a significant fraction of tightly bound
water stored in the soil does not participate in the advec-
tive component of stormflow during precipitation–runoff
events. The conceptual model applied here (Figure 6)
allows for a linear exchange between the immobile and
mobile solute states. The goal of this section is to exam-
ine the age dynamics when the solute is partitioned
into mobile and immobile components. The formulation
follows the development of Gerke and van Genuchten

(1993); however, we apply their approach to a volume-
average system. The resulting dynamical system, derived
in the same way as Equation (14), is given by:

dVm

dt
D Qi � Q

dCm

dt
D Qi

Vm
�Ci � Cim� � k1

Vim

Vm
�Cm � Cim�

dCim

dt
D k1�Cm � Cim�

d˛m

dt
D Cm � Qi

Vm
˛m � k1

Vim

Vm
�˛m � ˛im�

d˛im

dt
D Cim C k1�˛m � ˛im�

Am�t� D ˛m�t�/Cm�t�

Aim�t� D ˛im�t�/Cim�t� �19�

where Cm, Cim, ˛m, ˛im are the mobile and immobile
tracers and age concentration respectively, and Am and
Aim are the mobile and immobile water ages. k1 in
this case is the rate constant for exchange between the
mobile and immobile solute states. Note that the system
of equations (19) has seven state variables, five dynamic
and two algebraic states. The assumption of an immobile
fluid volume implies PVim D 0, and the volume ratio is
defined as

Vim

Vm
D �1 � ˇ�nV0

ˇnV�t�
�20�

where ˇ is the fraction of the porosity n that is occupied
by the mobile storage volume, and V0 is the mean
residual saturated volume of the system. Figure 7 shows
the unit step input case for the age of mobile and
immobile flows. The asymptotic value for mobile and
immobile ages is given by:

Am�1� D Vm�1� C Vim

Qi

Aim�1� D Vm�1� C Vim

Qi
C 1

k
�21�

It is interesting to note that the age of the mobile
fraction is increased by the magnitude of the immobile
volume (21) as compared to the well-mixed case, and
that the age of the immobile fraction is further increased
by k�1. The implications for watershed systems may be
significant where immobile storage volume represents an
adequate model and k�1 is large enough. In this case
k D 0Ð1 (time units�1) and the mobile volume fraction
is ˇ D 0Ð8. Clearly, the simple model proposed here for
immobile/mobile tracer storage cannot entirely explain
the apparent ‘old water’ often observed in upland water-
sheds. However, combined with the transient hydrology
effects described earlier, it does provide useful insight
into the path to a more complete understanding of the
contributing processes.

The solution for age was extended to cyclic wet–dry
input sequences. In Figure 8 we see that the on–off flow

Copyright  2010 John Wiley & Sons, Ltd. Hydrol. Process. 24, 1711–1718 (2010)
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Figure 7. Numerical solution for the mobile–immobile flow and tracer
transport system (Equation 19) for unit step inputs Qi and Ci and the
corresponding steady-state age for mobile and immobile storage (shown).
Note that both Am�1� and Aim�1� are larger than the steady-state age

for constant inputs AŁ�1� by constant factors given in Equation (21)
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Figure 8. Numerical solution for the mobile–immobile flow, tracer and
age for the system (19) for an intermittent sequence (wet–dry) of unit step
inputs Qi and Ci. The corresponding age for mobile and immobile storage
fractions are very sensitive to the input fluctuations, while the mobile and
immobile concentrations are not. It was estimated that the time-averaged
age of mobile and immobile tracers were larger than AŁ�1� by the factors

¾T/2 and k�1 respectively

cycle has only a small effect on the concentration but
a very large effect on the age of mobile and immobile
solutes. The solution shows that although a dynamic
steady state is reached, during the drying cycle, the age of
the mobile state increases in proportion to clock time, and
both mobile and immobile states are significantly older
than the steady-state age AŁ�1�.

The case of random inputs with mobile–immobile
solute storage was simulated and the results are shown
in Figure 9. The inputs were chosen to fluctuate about
unit values with the same assumptions and parameters as
for the earlier case (Figure 5). The results are consistent
with the previous interpretations; however, we note that
the immobile solute concentration has filtered the high-
frequency solute fluctuations observed in the mobile
volume.

The commentary by Kirchner (2003) is relevant here
in that, this simple model provides one explanation for
the ‘rapid mobilization of old water’, where the immobile
storage of solute increases the age of the mobile state in
proportion to k�1. We also notice that the age of solutes in
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Figure 9. Solution to the mobile–immobile flow system (19) for uniform
random inputs for Qi and Ci showing the evolution of age for the
mobile and immobile storage volume (lower graph) under fluctuating
input conditions. The inputs were generated from a uniform distribution
in the range f0, 2g. The initial conditions are zero-state as in the previous
cases. The steady-state age for constant inputs (Figure 2) is also shown

for reference

runoff will depend on the fluctuations in Q�t�. Overall, the
simple model provides useful insight into the behaviour
for field settings where immobile storage is suspected,
and the approach could provide a tool for estimating the
immobile volume and the rate constant k�1.

CONCENTRATION–AGE FOR A DISTRIBUTED
SOURCE WITH ADVECTION AND DISPERSION

The final example is motivated by an attempt to extend
the age solution to spatially distributed inputs over
a hillslope, and the setting is shown in Figure 10.
Following the same strategy outlined earlier, the transport
operator L�C� in Equation (8) is now defined in terms
of the advective and dispersive flux. The limited goal
of this section is to demonstrate that the age-simulation
strategy also applies to advective–dispersive systems,
and to compare these solutions to the volume-average
system (14) results given earlier. Assuming a steady flow,
the 1-D hillslope system is given by (Bear, 1972; Duffy
and Cusumano, 1998):

r Ð �Khrh� C ε D 0

�s
∂�Ch�

∂t
C r Ð F D εCi

F D QC � hJ

J D ��sDrC �22�

Copyright  2010 John Wiley & Sons, Ltd. Hydrol. Process. 24, 1711–1718 (2010)
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ε Ci

C(x,t)

Q(x)

x=0 x=L

Q(L)= εL

Q(0)=0

x+dx

Q(x) d

x

Figure 10. A distributed tracer and recharge in a steady, 1-D non-uniform
flow. The constant recharge rate produces the advective flux Q�x� D εx
which varies linearly along the flow path. The parameters were assigned
such that the spatially distributed solution could be compared to the

volume-average solutions developed earlier

where C�x, t� is the solute concentration, h�x� is the
saturated thickness, K is the hydraulic conductivity and ε
is the recharge rate to the aquifer. In Equation (8) L[C] D
r Ð F is the advective–dispersive flux term and D is the
dispersion coefficient. Expanding the transport equation
in (22) and including the age concentration equation (9)
lead to the following system for concentration and age in
a steady 1-D flow with recharge:

∂C

∂t
C u�x�

∂C

∂x
� D�x�

∂2C

∂x2 D K�Ci � C�

∂˛

∂t
C u�x�

∂˛

∂x
� D�x�

∂2˛

∂x2 D C � k˛ �23�

where for steady flow the lateral flux of groundwater and
the parameters are given by:

Q�x� D �Kh
∂h

∂x
D qh D εx

k D ε

�sd
; u�x� D k�x � aL�

D�x� D kxaL �24�

As before, the age concentration is assumed to have the
initial condition ˛�0� D 0, and the external source or the
recharge age concentration is taken to be ˛i D 0, which
states that the input of solute is zero age as it enters
the system as before. Figure 11 shows the space–time
solution for constant inputs. It is clear that the depth-
averaged model (23) has a nearly constant solution in
space. In fact, we get essentially the same solution at
any location along the flow as we do for the volume-
averaged case. To demonstrate this point, the unit step
solution for volume-averaged age and concentration are
superimposed in Figure 11 with almost no difference
between 1-D advective–dispersive transport with unit
inputs. Duffy and Lee (1992) found a similar result for
a more general 2-D flow system with stationary spatial
variability in K�x, z�, ε�x� and Ci�x, z�. We see in this
comparison that the age and concentration for well-mixed
and spatial inputs are essentially the same for comparable
conditions. One practical implication is that the simple
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Figure 11. The space and time distribution of tracer concentration (upper)
and age (lower) for the system (23) including the effects of non-uniform
flow and advective–dispersive transport, with uniform constant εi and
Ci. The solutions for C�x, t� and A�x, t� are nearly constant in space as
shown by Duffy and Lee (1992). The solid lines are superimposed from

the volume-average solution from Equation (14) shown in Figure 2

volume-average model has very similar dynamics and
input–output behaviour to the spatially distributed flow
along a hillslope, and that simple models continue to have
an important role to play in watershed studies. It must be
noted that in real field settings, the processes encountered
will be more complex including the role of bedrock slope,
displacement dynamics, transient contributing area, etc.
The comparisons made here can only serve as a step
towards a more comprehensive theory that includes these
processes.

CONCLUSIONS

A theoretical interpretation of tracer and solute ages for
a transient hydrological systems is developed based on
constructing the moments of the underlying concentration
age distribution function c�x, t, ��. The results are appli-
cable to spatially distributed and volume-averaged sys-
tems and the method requires limited assumptions on
the particular form of the distribution function. Partic-
ular examples or numerical experiments are conducted
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using Mathematica simulation software (Wolfram, 2010)
which demonstrate a number of points: (1) The first two
moments of the age distribution function are sufficient
to construct a dynamical system for the mean age and
concentration under steady or transient flow conditions.
(2) Solutions to the coupled system of equations for
flow, concentration and age show that ‘age’ of solutes
stored within the watershed or leaving the watershed is
a dynamic process which depends on flow variations as
well as the solute or tracer dynamics. (3) Intermittency of
wetting and drying cycles leads to an apparent increase in
the tracer age in proportional to the duration of the ‘dry’
phase. It is noted that transient effects may be a particu-
lar problem for regions where intermittent rainfall–runoff
has long periods of no flow. This would be the case
in arid regions or for small upland humid watersheds
where vegetation tends to consume all the summer pre-
cipitation. (4) The question of how mobile/immobile flow
may affect the age of solutes is examined by including a
low permeable, passive store that drops the well-mixed
assumption in the first model. In this case, we see explic-
itly how an immobile storage of tracer will increase the
age of the stored or exiting waters as compared to the
steady-state age often used. The presence of immobile
storage in the watershed serves to increase these time con-
stants in a predictable way based on the magnitude of the
rate constant k. (5) Comparison of the volume-averaged
model with spatially distributed advective–dispersive
transport along a 1-D hillslope trajectory is shown to
compare well with the volume-average results for simi-
lar hydraulic parameters. The comparisons extend earlier
work (Duffy and Lee, 1992; Duffy and Cusumano, 1998)
by including age in the comparison. Finally, the paper
shows that relatively few additional parameters are nec-
essary to include dynamic hydrology in age modelling. In
general, including transient flow added additional infor-
mation that complements steady-state age results widely
used in the literature.
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